CÂU 2: (3,5 điểm)
Cho Parabol y=x2 và đường thẳng (d) có phương trình y=2mx-m2+4.
a. Tìm hoành độ của các điểm thuộc Parabol biết tung độ của chúng
b. Chứng minh rằng Parabol và đường thẳng (d) luôn cắt nhau tại 2 điểm phân biệt. Tìm toạ độ giao điểm của chúng. Với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất?
1 trang |
Chia sẻ: quoctuanphan | Lượt xem: 955 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Kiểm tra cuối năm môn Toán Lớp 9 Đề số 105, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề số 105
câu 1: (2,5 điểm)
Giải các phương trình sau:
a. x2-x-12 = 0
b.
câu 2: (3,5 điểm)
Cho Parabol y=x2 và đường thẳng (d) có phương trình y=2mx-m2+4.
a. Tìm hoành độ của các điểm thuộc Parabol biết tung độ của chúng
b. Chứng minh rằng Parabol và đường thẳng (d) luôn cắt nhau tại 2 điểm phân biệt. Tìm toạ độ giao điểm của chúng. Với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất?
câu 3: (4 điểm)
Cho ∆ABC có 3 góc nhọn. Các đường cao AA’, BB’, CC’ cắt nhau tại H; M là trung điểm của cạnh BC.
1. Chứng minh tứ giác AB’HC’ nội tiếp được trong đường tròn.
2. P là điểm đối xứng của H qua M. Chứng minh rằng:
a. Tứ giác BHCP là hình bình hành.
b. P thuộc đường tròn ngoại tiếp ∆ABC.
3. Chứng minh: A’B.A’C = A’A.A’H.
4. Chứng minh:
File đính kèm:
- KT cuoi nam d105.doc