Câu 2 (4 điểm)
Tìm m để hàm số có cực đại, cực tiểu. Đồng thời đường thẳng nối điểm cực đại, cực tiểu của đồ thị hàm số tạo với đường thẳng y = 2x + 3 góc 450 .
6 trang |
Chia sẻ: manphan | Lượt xem: 909 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 năm học 2011 - 2012 môn thi : toán lớp 12 thpt thời gian: 180 phút (không kể thời gian giao đề), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO
LẠNG SƠN
ĐỀ CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
LỚP 12 NĂM HỌC 2011 - 2012
Môn thi : Toán lớp 12 THPT
Thời gian: 180 phút (không kể thời gian giao đề)
Ngày thi: 28/10/2011
(Đề thi gồm có 1 trang, 5 câu)
Câu 1 (4 điểm)
Giải phương trình
Câu 2 (4 điểm)
Tìm m để hàm số có cực đại, cực tiểu. Đồng thời đường thẳng nối điểm cực đại, cực tiểu của đồ thị hàm số tạo với đường thẳng y = 2x + 3 góc 450 .
Câu 3 (4 điểm)
Cho dãy số (xn) thỏa mãn ()
Đặt . Tính Limun .
Câu 4 (4 điểm)
Cho 3 số dương a, b, c thay đổi. Tìm giá trị lớn nhất của biểu thức:
.
Câu 5 (4 điểm)
Cho lăng trụ ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = và hình chiếu vuông góc của đỉnh A' trên mặt phẳng (ABC) là trung điểm của AB.
a. Tính khoảng cách từ A đến mặt phẳng (A'BC) theo a.
b. Tính cosin góc giữa hai đường thẳng AA' và B'C'.
-----------------------------Hết-----------------------------
Đáp án Đề HSG Lạng Sơn 2011 lớp 12
Câu 1 (4 điểm) Giải phương trình: .do nên 1+6x > . Đặt u = 1+6x, v =, khi đó phương trình cho trở thành hay u – 2v = ± 3.
*) u – 2v = 3 ta được
*) u – 2v = -3 ta được
Phương trình có 2 nghiệm x = 1,
Câu 2(4điểm) Tìm m để hàm số có cực đại , cực tiểu. Đồng thời đường thẳng nối điểm cực đại, cực tiểu của đồ thị hàm số tạo với đường thẳng y= 2x + 3 một góc 450.
Giải . Tập xác định của hàm số: D = R
y’ = 3x2 +6x- (m+1) để hàm số có cực đại, cực tiểu thì y’ = 0 có 2 nghiệm phân biệt hay .
Ta có
Do các hoành độ của các cực trị là nghiệm của y’ = 0 lên các điểm cực trị có tọa độ thỏa mãn đường thẳng
Đường thẳng qua 2 cực trị tạo với đường thẳng y = 2x + 3 một góc 450 thì ta có
Câu 3 (4 điểm)
Cho dãy số (xn) thỏa mãn:
Đặt
Xét hàm số đồng biến trên (7/2 ; +∞) nên x1 = 8 > 7/2 nên x2 >x1 tương tự ta có xn+1 >xn mọi ta chứng minh (xn ) là dãy không bị chặn trên. Thật vậy nếu dãy (xn ) bị chặn trên thì nó hội tụ về x > 8 hay phương trình có nghiệm x = 5 > 8 (mâu thuẫn).
Ta có
Cho k chạy từ 1 đến n ta có vậy Limun =1/3
Câu 4 (4điểm) Đặt
x, y, z > 0 khi đó
Áp dụng bất đẳng thức bunhiacopki cho 2 dãy số dương
Ta được
Vậy GTLN của P là 3/4 khi x= y = z hay a = b = c
Câu 5 (4điểm)
Goi I là trung điểm của AB Khi đó A’I là đường cao của hình lăng trụ (giả thiết)
Ta có A’I = diện tích của tam giác ABC là
Ta có tam giác A’AC vuông tại A vì
gọi E là trung điểm của A’C thì BE là đường cao của tam giác A’BC
(vì A’B = BC = 2a) .
Diên tích tam giác A’BC
Goi V là thể tích của khối chóp A’.ABC thì
Góc giữa AA’ và B’C’ cũng là góc giữa AA’ và BC gọi là α ta có
File đính kèm:
- De HSG cap tinh va dap an.docx