Luận văn Vận dụng phương pháp dạy học khám phá có hướng dẫn trong dạy học bất đẳng thức ở trường THPT

MỤC LỤC

MỞ ĐẦU Trang

1. Lý do chọn đề tài. 1

2. Giả thuyết khoa học. 3

3. Mục đích nghiên cứu. 3

4. Nhiệm vụ nghiên cứu. 3

5. Phương pháp nghiên cứu. 4

6. Cấu trúc luận văn. 4

Chương 1. CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN. 6

1.1. Dạy học bằng các hoạt động khám phá có hướng dẫn. 6

1.1.1. Khái quát. 6

1.1.2. Tổ chức các hoạt động học tập khám phá. 7

1.1.3. Điều kiện thực hiện. 8

1.2. Các hoạt động và hoạt động thành phần. 9

1.2.1. Khái quát. 9

1.2.2. Phát hiện những hoạt động tương thích với nội dung. 12

1.2.3. Phân tích các hoạt động thành các hoạt động thành phần. 13

1.2.4. Lựa chọn hoạt động dựa vào mục đích. 14

1.3. Các quy trình giải một bài toán theo bốn bước của Polya. 15

1.4. Thực tiễn việc dạy học nội dung bất đẳng thức ở trường phổ thông. 20

Kết luận chương 1. 22

Chương 2. VẬN DỤNG PHưƠNG PHÁP DẠY HỌC KHÁM PHÁ CÓ

HưỚNG DẪN TRONG DẠY HỌC BẤT ĐẲNG THỨC Ở

TRưỜNG THPT. 23

2.1. Khám phá vận dụng bất đẳng thức đã biết. 23

2.2. Khám phá hàm số trong chứng minh bất đẳng thức. 34

2.3. Khám phá ẩn phụ trong chứng minh bất đẳng thức. 51

2.4. Khám phá bất đẳng thức theo nhiều phương diện. 64

2.5. Khám phá các sai lầm trong lời giải và sửa chữa. 75

Kết luận chương 2. 84

Chương 3. THỰC NGHIỆM Sư PHẠM. 86

3.1. Mục đích, tổ chức, nội dung thực nghiệm sư phạm. 86

3.2.Các giáo án thực nghiệm sư phạm. 87

3.3. Kết quả thực nghiệm sư phạm. 103

Kết luận chương 3.

pdf118 trang | Chia sẻ: thanhthanh29 | Lượt xem: 600 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Luận văn Vận dụng phương pháp dạy học khám phá có hướng dẫn trong dạy học bất đẳng thức ở trường THPT, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM –––––––––––––––––––– ĐẶNG KHẮC QUANG VẬN DỤNG PHƢƠNG PHÁP DẠY HỌC KHÁM PHÁ CÓ HƢỚNG DẪN TRONG DẠY HỌC BẤT ĐẲNG THỨC Ở TRƢỜNG THPT Chuyên ngành: Lí luận và Phƣơng pháp dạy học Toán Mã số: 60.14.10 TÓM TẮT LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thái Nguyên - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên CÔNG TRÌNH ĐƢỢC HOÀN THÀNH TẠI: TRƢỜNG ĐẠI HỌC SƢ PHẠM - ĐẠI HỌC THÁI NGUYÊN Ngƣời hƣớng dẫn khoa học: PGS.TS. Bùi Văn Nghị Ngƣời phản biện: Phản biện 1: Nguyễn Anh Tuấn Phản biện 2: Cao Thị Hà Luận văn sẽ đƣợc bảo vệ tại Hội đồng chấm luận văn Họp tại trƣờng Đại học sƣ phạm – Đại học Thái Nguyên Vào hồi 15 giờ, ngày 25 tháng 10 năm 2009 Có thể tìm hiểu luận văn tại Thƣ viện trƣờng Đại học Sƣ phạm – Đại học Thái Nguyên Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên THAI NGUYEN UNIVERSITY THAI NGUYEN TEACHER TRAINING COLLEGE –––––––––––––––––––––––––––– DANG KHAC QUANG APPLYING TEACHING METHOD OF DISCOVERY WITH GUIDING IN TEACHING INEQUALITY AT HIGH SCHOOL Limited speciality: Argument and Teaching Method Code: 60.14.10 SUM UP EDUCATIONAL AND SCIENTIAL M.A. ESSAY THAI NGUYEN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM ––––––––––––––––––––––––– ĐẶNG KHẮC QUANG VẬN DỤNG PHƢƠNG PHÁP DẠY HỌC KHÁM PHÁ CÓ HƢỚNG DẪN TRONG DẠY HỌC BẤT ĐẲNG THỨC Ở TRƢỜNG THPT LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM –––––––––––––––––––– ĐẶNG KHẮC QUANG VẬN DỤNG PHƢƠNG PHÁP DẠY HỌC KHÁM PHÁ CÓ HƢỚNG DẪN TRONG DẠY HỌC BẤT ĐẲNG THỨC Ở TRƢỜNG THPT Chuyên ngành: LL&PP DẠY HỌC TOÁN Mã số: 60.14.10 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: PGS.TS. BÙI VĂN NGHỊ THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 MỤC LỤC MỞ ĐẦU Trang 1. Lý do chọn đề tài......................................................................................... 1 2. Giả thuyết khoa học..................................................................................... 3 3. Mục đích nghiên cứu................................................................................... 3 4. Nhiệm vụ nghiên cứu.................................................................................. 3 5. Phương pháp nghiên cứu............................................................................. 4 6. Cấu trúc luận văn......................................................................................... 4 Chƣơng 1. CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN......................................... 6 1.1. Dạy học bằng các hoạt động khám phá có hướng dẫn............................. 6 1.1.1. Khái quát............................................................................................... 6 1.1.2. Tổ chức các hoạt động học tập khám phá............................................. 7 1.1.3. Điều kiện thực hiện............................................................................... 8 1.2. Các hoạt động và hoạt động thành phần.................................................. 9 1.2.1. Khái quát............................................................................................... 9 1.2.2. Phát hiện những hoạt động tương thích với nội dung......................... 12 1.2.3. Phân tích các hoạt động thành các hoạt động thành phần................... 13 1.2.4. Lựa chọn hoạt động dựa vào mục đích............................................... 14 1.3. Các quy trình giải một bài toán theo bốn bước của Polya..................... 15 1.4. Thực tiễn việc dạy học nội dung bất đẳng thức ở trường phổ thông..... 20 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 Kết luận chƣơng 1....................................................................................... 22 Chƣơng 2. VẬN DỤNG PHƢƠNG PHÁP DẠY HỌC KHÁM PHÁ CÓ HƢỚNG DẪN TRONG DẠY HỌC BẤT ĐẲNG THỨC Ở TRƢỜNG THPT.................................................................... 23 2.1. Khám phá vận dụng bất đẳng thức đã biết............................................. 23 2.2. Khám phá hàm số trong chứng minh bất đẳng thức.............................. 34 2.3. Khám phá ẩn phụ trong chứng minh bất đẳng thức............................... 51 2.4. Khám phá bất đẳng thức theo nhiều phương diện................................. 64 2.5. Khám phá các sai lầm trong lời giải và sửa chữa.................................. 75 Kết luận chƣơng 2....................................................................................... 84 Chƣơng 3. THỰC NGHIỆM SƢ PHẠM................................................ 86 3.1. Mục đích, tổ chức, nội dung thực nghiệm sư phạm............................... 86 3.2.Các giáo án thực nghiệm sư phạm.......................................................... 87 3.3. Kết quả thực nghiệm sư phạm.............................................................. 103 Kết luận chƣơng 3..................................................................................... 105 KẾT LUẬN................................................................................................ 106 Tài liệu tham khảo Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 Lời cảm ơn Tôi xin bày tỏ lòng biết ơn chân thành tới PGS - TS Bùi Văn Nghị, đã tận tình hướng dẫn tôi hoàn thành luận văn này. Tôi xin trân trọng cảm ơn: - Phòng đào tạo sau đại học trường ĐHSP Thái Nguyên, Khoa Toán trường ĐHSP Thái Nguyên. - Các thầy giáo ở Viện Toán học Việt Nam, trường ĐHSP Hà Nội, trường ĐHSP Thái Nguyên, đã hướng dẫn chúng tôi học tập trong suốt quá trình học tập và nghiên cứu. - Ban giám hiệu và các bạn đồng nghiệp ở tổ toán trường THPT Lạng Giang số 2 - Bắc Giang đã tạo điều kiện thuận lợi giúp tôi hoàn thành đề tài của mình. - Bạn bè và gia đình đã động viên tôi trong suốt quá trình học tập và làm luận văn. Thái nguyên, tháng 10 năm 2009 Học viên Đặng Khắc Quang Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 DANH MỤC CHỮ VIẾT TẮT TRONG LUẬN VĂN [?] : Câu hỏi và bài tập kiểm tra [!] : Dự đoán câu trả lời hoặc cách xử lý của học sinh BĐT : Bất đẳng thức GV : Giáo viên HS : Học sinh NXB : Nhà xuất bản PPDH : Phương pháp dạy học THPT : Trung học phổ thông Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 MỞ ĐẦU 1. Lý do chọn đề tài Luật giáo dục nước Cộng hoà xã hội chủ nghĩa Việt Nam năm 2005 đã quy định: "Phương pháp giáo dục phải phát huy tính tích cực, tự giác, chủ động, tư duy sáng tạo của người học; bồi dưỡng năng lực tự học, lòng say mê học tập và ý chí vươn lên" (chương I, điều 4). "Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, tư duy sáng tạo của học sinh; phù hợp với đặc điểm của từng lớp học; bồi dưỡng phương pháp tự học, rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú học tập của học sinh" (chương I, điều 24). Những quy định trên phản ánh nhu cầu đổi mới phương pháp giáo dục để giải quyết mâu thuẫn giữa yêu cầu đào tạo con người mới với thực trạng lạc hậu nói chung của phương pháp giáo dục ở nước ta hiện nay. Mâu thuẫn này đã làm nảy sinh và thúc đẩy một cuộc vận động đổi mới phương pháp dạy học ở tất cả các cấp trong ngành giáo dục với định hướng đổi mới PPDH là: PPDH cần hướng vào việc tổ chức cho người học học tập trong hoạt động và bằng hoạt động tự giác, tích cực, chủ động và sáng tạo. Định hướng này có thể gọi tắt là học tập trong hoạt động và bằng hoạt động, hay ngắn gọn hơn là hoạt động hoá người học [6]. Đổi mới phương pháp dạy học môn toán theo hướng tích cực hoá hoạt động học tập của học sinh, nhằm khơi dậy và phát triển khả năng tự học, hình thành cho học sinh tư duy tích cực độc lập, sáng tạo, rèn luyện kỹ năng vận Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh. Có thể kể ra một số phương hướng đổi mới phương pháp dạy học môn toán ở trường phổ thông hiện nay là: - Phát triển tư duy và rèn luyện các hoạt động trí tuệ. - Rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn. - Sử dụng đa phương tiện để giải quyết vấn đề, minh họa cho học sinh tìm tòi từ tình huống, nghiên cứu, phát hiện vấn đề - Bồi dưỡng phương pháp tự học, phương pháp đọc sách. - Đổi mới phương pháp đánh giá, kết hợp đánh giá của thầy, với tự đánh giá của trò. - Tăng cường học tập cá thể phối hợp với học tập tương tác: hoạt động theo nhóm - Tăng cường các hoạt động hỗ trợ: tự học, chuyên đề, hội thảo, báo cáo thực hành. - Rèn luyện phong cách hòa nhập với cộng đồng. Nhìn chung tư tưởng chủ đạo của phương pháp đổi mới là: tập trung vào các hoạt động của trò; trò tự nghiên cứu, tìm tòi, khám phá; tăng cường giao lưu trao đổi giữa trò và trò. Các định hướng này phù hợp với quan điểm tâm lý học cho rằng hoạt động có ảnh hưởng trực tiếp tới sự hình thành và phát triển nhân cách, phù hợp với luận điểm cơ bản của giáo dục học Macxit: Con người phát triển trong hoạt động và học tập diễn ra trong hoạt động. Vấn đề dạy học khám phá có hướng dẫn dựa trên các hoạt động của học sinh do giáo viên tạo ra trên lớp, đã được khá nhiều thầy giáo quan tâm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 nghiên cứu. Tuy nhiên việc khai thác ứng dụng những lý luận này vào thực tế giảng dạy môn toán ở trường phổ thông nước ta còn nhiều hạn chế, vì hầu hết các thầy cô giáo chưa thấy hết được tác dụng to lớn của phương pháp này nên chưa được coi trọng và áp dụng vào thực tế giảng dạy. Ngoài ra giáo viên cũng chưa có nhiều kinh nghiệm và thiếu những cơ sở lý luận để xây dựng các hoạt động tương thích với nội dung, chưa được huấn luyện một cách có hệ thống, chưa có nhiều tài liệu tham khảo Mặt khác trong chương trình môn toán ở trường phổ thông bất đẳng thức là một nội dung khó đối với nhiều học sinh. Nhiều giáo viên cũng gặp trở ngại, khó khăn khi giảng dạy phần này . Xuất phát từ những lý do trên chúng tôi chọn đề tài là: “Vận dụng phƣơng pháp dạy học khám phá có hƣớng dẫn trong dạy học bất đẳng thức ở trƣờng THPT ”. 2. Giả thuyết khoa học Nếu vận dụng hợp lý phương pháp dạy học khám phá có hướng dẫn trong dạy bất đẳng thức ở trường THPT, thì HS học tập một cách chủ động, tích cực, sáng tạo hơn, qua đó phát triển trí tuệ hơn và nâng cao chất lượng dạy và học ở trường phổ thông. 3. Mục đích nghiên cứu Xây dựng một số giáo án dạy học bất đẳng thức ở trường THPT vận dụng phương pháp dạy học khám phá có hướng dẫn nhằm nâng cao hiệu quả dạy học nội dung này. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 4. Nhiệm vụ nghiên cứu - Phân tích làm sáng tỏ tính ưu việt của phương pháp dạy học khám phá có hướng dẫn - Nghiên cứu lý luận đổi mới phương pháp dạy học, sách giáo khoa và thực tế việc dạy học theo quan điểm mới để vận dụng phương pháp dạy học khám phá có hướng dẫn vào một số nội dung cụ thể. - Nghiên cứu thực tế vận dụng phương pháp dạy học khám phá có hướng dẫn ở trường THPT. - Thực nghiệm sư phạm để kiểm nghiệm tính khả thi và hiệu quả của đề tài. 5. Phƣơng pháp nghiên cứu Nghiên cứu lý luận: đọc và nghiên cứu các tài liệu viết về lí luận dạy học môn toán và nghiên cứu các tài liệu liên quan đến đề tài để làm sáng tỏ về phương pháp dạy học khám phá có hướng dẫn. Phương pháp quan sát điều tra: tiến hành dự giờ, trao đổi, tham khảo ý kiến một số đồng nghiệp dạy giỏi toán, có kinh nghiệm, tìm hiểu thực tiễn giảng dạy bất đẳng thức ở một số trường phổ thông. Thực nghiệm sư phạm: thực nghiệm giảng dạy một số giáo án tại trường THPT Lạng Giang số 2 nhằm đánh giá tính khả thi và hiệu quả của đề tài. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 6. Cấu trúc luận văn Mở đầu Chƣơng I: Cơ sở lý luận và thực tiễn phương pháp dạy học khám phá có hướng dẫn Chƣơng II: Vận dụng phương pháp dạy học khám phá có hướng dẫn trong dạy học bất đẳng thức ở trường THPT Chƣơng III: Thực nghiệm sư phạm Kết luận Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 Chƣơng 1 CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN Chương này sẽ trình bày các vấn đề lý luận về phương pháp dạy học khám phá có hướng dẫn, các hoạt động và hoạt động thành phần trong khám phá, các quy trình giải một bài toán theo bốn bước của Polya. Ứng với mỗi phần lý luận đều có các ví dụ minh hoạ cụ thể. Chương này được viết dựa trên các tài liệu [6], [15]. 1.1. Dạy học bằng các hoạt động khám phá có hƣớng dẫn 1.1.1. Khái quát Học tập là quá trình lĩnh hội tri thức mà loài người đã tích lũy được các kiến thức sách giáo khoa và các bài giảng của thầy chủ yếu mang lại cho học sinh những kiến thức đã có sẵn. Thường thì GV ít làm rõ nguồn gốc của các tri thức cho học sinh (phát minh vào lúc nào và bằng cách nào) mà cố gắng truyền đạt để HS hiểu rõ nội dung các kiến thức. Trong học tập, HS cũng cố gắng hiểu rõ các kiến thức mà thầy giáo truyền đạt và sau đó vận dụng vào làm các bài tập đó là cách dạy và học bằng phương pháp thuyết trình: thầy giảng, trò nghe. Phương pháp này làm cho HS tiếp thu một cách thụ động thiếu hứng thú trong học hành. Các nhà nghiên cứu giáo dục, các nhà giáo đang quan tâm tới những phương pháp dạy học làm cho HS luôn tích cực, hứng thú. Những phương pháp này chủ yếu dựa vào các hoạt động của HS do thầy giáo tạo ra trên lớp; trong đó phải kể đến phương pháp dạy học khám phá có hướng dẫn. Đó là phương pháp dạy học thông qua các hoạt động do thầy dẫn dắt, HS tự khám phá ra các kiến thức. Nếu làm được như vậy HS sẽ thông hiểu, ghi nhớ và vận dụng những gì mình đã nắm được qua hoạt động chủ Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 động, tự lực khám phá của chính mình. Tới một trình độ nhất định thì sự học tập tích cực, sự khám phá sẽ mang tính nghiên cứu khoa học và người học cũng tạo ra những tri thức mới. Khác với khám phá trong nghiên cứu khoa học, khám phá trong học tập không phải là một quá trình tự phát mà là một quá trình có hướng dẫn của GV, Trong đó GV đã khéo léo đặt HS vào địa vị người phát hiện lại, người khám phá lại tri thức của loài người. 1.1.2. Tổ chức các hoạt động học tập khám phá Hoạt động khám phá trong học tập có nhiều dạng khác nhau, từ trình độ thấp lên trình độ cao, tuỳ theo trình độ năng lực tư duy của người học và được tổ chức hoạt động theo cá nhân, nhóm nhỏ hoặc nhóm lớn, tuỳ theo độ phức tạp của vấn đề cần khám phá. Các hoạt động khám phá học trong học tập có thể là: + Trả lời câu hỏi. + Điền từ, điền bảng, tra bảng... + Lập bảng, biểu đồ, đồ thị... + Thử nghiệm, đề xuất giải quyết, phân tích nguyên nhân, thông báo kết quả. + Thảo luận, tranh cãi về một vấn đề. + Giải bài toán, bài tập. + Điều tra thực trạng, đề xuất giải pháp cải thiện thực trạng, thực nghiệm giải pháp lớn. + Làm bài tập lớn, chuyên đề, luận án, luận văn, đề án... Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 Quyết định hiệu quả học tập là những gì HS làm chứ không phải những gì GV làm. Vì vậy phải thay đổi quan niệm soạn giáo án, từ tập trung vào thiết kế các hoạt động của GV chuyển sang tập trung vào thiết kế các hoạt động của HS. Tuy nhiên không nên cực đoan, có tham vọng biến toàn bộ nội dung bài học thành chuỗi các nội dung bài học khám phá. Số lượng hoạt động và mức độ tư duy đòi hỏi ở mỗi hoạt động trong mỗi tiết học phải phù hợp với trình độ HS để có đủ thời lượng cho thầy trò thực hiện các hoạt động khám phá. 1.1.3. Điều kiện thực hiện Việc áp dụng dạy học khám phá đòi hỏi các điều kiện sau: HS phải có những kiến thức kỹ năng cần thiết để thực hiện các hoạt động khám phá do GV tổ chức. Sự hướng dẫn của GV trong mỗi hoạt động phải ở mức cần thiết không quá ít không quá nhiều, đảm bảo cho HS phải hiểu chính xác mình phải làm gì trong mỗi hoạt động khám phá. Muốn vậy GV phải hiểu rõ khả năng HS của mình. Hoạt động khám phá phải được GV giám sát trong quá trình HS thực hiện. GV cần chuẩn bị một số câu hỏi gợi mở từng bước để giúp HS tự đi tới mục tiêu của hoạt động. Nếu là hoạt động tương đối dài, có thể từng chặng yêu cầu một vài nhóm HS cho biết kết quả tìm tòi của mình. Xét về khía cạnh tìm tòi, khám phá thì phương pháp dạy học này rất gần với phương pháp dạy học đàm thoại Ơrixtic và dạy học phát hiện, giải quyết vấn đề, dạy học kiến tạo, chỉ khác nhau về cách tổ chức các hoạt động học tập. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 Ví dụ 1: Trong dạy học bài toán “Cho ba số dương a, b, c và thoả mãn 1abc  . Chứng minh rằng 3 3 3a b c a b c     ”, ta có thể thiết kế các hoạt động khám phá thông qua chuỗi câu đàm thoại phát hiện như sau: - Hãy nhìn vào một ẩn, ẩn a chẳng hạn: vế trái là 3a , vế phải là a , làm thế nào để “hạ bậc” từ 3a xuống a (so sánh giữa 3a và a )? (áp dụng bất đẳng thức Côsi cho 3 số dương: 3a , 1, 1) - Nếu áp dụng cho ba số dương 3a , 2, 4 có được không, vì sao? (cũng được nhưng không đi đến kết quả) - Đẳng thức xảy ra khi nào? Điều này có ảnh hưởng gì đến việc chọn số thích hợp? (đẳng thức xảy ra khi 1a b c   , nên chọn hai số 1 là phù hợp) - Vận dụng tương tự với 3b và 3c rồi so sánh cái đã có với yêu cầu của bài toán. (áp dụng tương tự với 3b và 3c suy ra 3 3 3 3( ) 6a b c a b c      ) - Xem xét lại yêu cầu của bài toán (so sánh với yêu cầu của bài toán ta cần chứng minh 3a b c   ) - Bạn đã dùng hết giải thiết chưa? Tổng và tích 3 số , ,a b c liên hệ với nhau bởi bất đẳng thức nào? (bất đẳng thức Côsi cho 3 số không âm: 33a b c abc   ) Từ đó suy ra bất đẳng thức cần chứng minh. Trong ví dụ này, học sinh đã học bất đẳng thức Côsi và có kỹ năng cần thiết để chứng minh một bài toán bất đẳng thức. Giáo viên gợi ý ở mức độ vừa phải để học sinh hiểu rõ mình phải làm gì trong mỗi hoạt động khám phá. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 1.2. Các hoạt động và hoạt động thành phần 1.2.1. Khái quát Hoạt động và hoạt động thành phần là một trong những thành tố cơ sở quan trọng nhất của phương pháp dạy học. Mỗi nội dung dạy học đều liên hệ mật thiết với những hoạt động nhất định. Phát hiện những hoạt động tiềm tàng trong mỗi nội dung là cụ thể hoá được mục đích dạy học nội dung đó, chỉ ra được cách kiểm tra việc thực hiện mục đích này, đồng thời vạch ra được con đường để người học chiếm lĩnh nội dung đó và đạt được những mục đích dạy học khác. Cho nên điều căn bản của phương pháp dạy học là khai thác được những hoạt động tiềm tàng trong nội dung để đạt được mục đích dạy học. Quan điểm này thể hiện rõ nét mối liên hệ hữu cơ giữa nội dung, mục đích và phương pháp dạy học. Nó hoàn toàn phù hợp với luận điểm cơ bản cho rằng con người phát triển trong hoạt động và học tập diễn ra trong hoạt động. Quá trình dạy học là quá trình điều khiển hoạt động và giao lưu của HS nhằm đạt được mục đích dạy học. Đây là quá trình điều khiển con người, chứ không phải điều khiển máy móc, vì vậy cần quan tâm đến yếu tố tâm lý, chẳng hạn HS có sẵn sàng, có hứng thú thực hiện hoạt động này, hoạt động khác hay không. Xuất phát từ nội dung dạy học, ta cần phát hiện những hoạt động liên hệ với nó, rồi căn cứ vào mục đích dạy học mà chọn lựa để tập luyện cho học sinh một số những hoạt động đã phát hiện được. Việc phân tích các hoạt động thành các hoạt động thành phần cũng giúp ta tổ chức cho HS tiến hành những hoạt động với độ phức hợp vừa sức họ. Hoạt động thúc đẩy sự phát triển là hoạt động mà chủ thể thực hiện một cách tự giác và tích cực. Vì vậy, cần cố gắng gợi động cơ để học sinh ý thức Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 rõ vì sao thực hiện hoạt động này hay hoạt động khác. Trong hoạt động đôi khi kết quả của hoạt động trước lại là tiền đề cho hoạt động tiếp theo. Theo [15] tư tưởng chủ đạo về quan điểm hoạt động trong phương pháp dạy học như sau: + Cho học sinh thực hiện và tập luyện những hoạt động và hoạt động thành phần tương thích với nội dung và mục đích dạy học. + Gợi động cơ cho các hoạt động học tập. + Dẫn dắt HS chiếm lĩnh tri thức, đặc biệt là tri thức phương pháp như phương tiện và kết quả của hoạt động. + Phân bậc hoạt động làm căn cứ điều khiển quá trình dạy học. Trên đây là những tư tưởng chủ đạo giúp người thầy giáo điều khiển quá trình học tập của HS. Những tư tưởng chủ đạo này cũng là những luận điểm phân biệt với quan điểm thực dụng phản diện, chỉ quan tâm đến những hoạt động thụ động máy móc. Khác với quan điểm đó, ở đây chúng ta chú ý đến mục đích, động cơ, đến tri thức phương pháp, đến trải nghiệm thành công, nhờ đó đảm bảo được tính tự giác, tích cực, chủ động, sáng tạo của hoạt động học tập nói riêng. Những tư tưởng chủ đạo trên cũng thể hiện tính toàn diện của mục đích dạy học việc kiến tạo một tri thức, rèn luyện một kỹ năng, hình thành một thái độ, cũng là nhằm giúp HS hoạt động trong học tập cũng như trong đời sống. Như vậy những mục đích thành phần được thống nhất trong hoạt động, điều này thể hiện mối liên hệ hữu cơ giữa chúng với nhau. Tri thức, kỹ năng, thái độ một mặt là điều kiện và mặt khác là đối tượng biến đổi của hoạt động. Hướng vào hoạt động theo các tư tưởng chủ đạo trên không hề làm phiến diện mục đích dạy học mà trái lại, còn đảm bảo tính toàn diện của mục dích đó. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 1.2.2. Phát hiện những hoạt động tƣơng thích với nội dung Xuất phát từ nội dung dạy học, trước hết cần phát hiện những hoạt động tương thích với nội dung này. Một hoạt động là tương thích với một nội dung nếu nó góp phần đem lại kết quả giúp chủ thể chiếm lĩnh hoặc vận dụng nội dung đó. Kết quả ở đây được hiểu là sự biến đổi, phát triển bên trong chủ thể, phân biệt với kết quả tạo ra ở môi trường bên ngoài. Chẳng hạn: khi một người xây nhà thì kết quả bên ngoài là ngôi nhà xây được, còn kết quả bên trong là những tri thức được kiến tạo, những kỹ năng được rèn luyện, là sự trưởng thành của chủ thể trong quá trình xây dựng này. Việc phát hiện những hoạt động tương thích với nội dung căn cứ một phần quan trọng vào sự hiểu biết về những hoạt động nhằm lĩnh hội những nội dung khác nhau: khái niệm, định lý hay phương pháp về những con đường khác nhau để lĩnh hội từng dạng nội dung, chẳng hạn con đường quy nạp hay suy diễn để xây dựng khái niệm, con đường thuần tuý suy diễn hay có pha suy đoán để học tập định lý. Trong việc phát hiện những hoạt động tương thích với nội dung, ta cần chú ý xem xét những dạng hoạt động khác nhau, trên những bình diện khác nhau. Những hoạt động sau đây cần được chú ý: + Nhận dạng và thể hiện, + Những hoạt động toán học phức hợp, + Những hoạt động trí tuệ phổ biến trong toán học, + Những hoạt động trí tuệ chung, + Những hoạt động ngôn ngữ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 Ví dụ 2: Trong dạy học bài toán “Cho  , , 0;1a b c thoả mãn 1a b c   . Chứng minh rằng 2 2 2 1a b c   ” ta có thể khai thác một số hoạt động và hoạt động thành phần như sau: - Khai thác giả thiết để so sánh 2a và a (ta có: 20 1a a a    ). - Vận dụng tương tự với ẩn b và c, so sánh giữa cái đã có và yêu cầu của bài toán (suy ra 2 2 2 2 2 2 1a b c a b c a b c         ). - Hoạt động thành phần: dấu đẳng thức xảy ra khi nào? (dấu đẳng thức xảy ra  ( , , ) (1,0,0), (0,0,1), (0,1,0)a b c  ). - Nhìn bất đẳng thức ở phương diện khác: điều kiện 1a b c   gợi ta nhớ đến phương trình mặt phẳng trong hệ trục toạ độ Oxyz. Còn 2 2 2a b c  chính là bình phương khoảng cách từ O đến điểm ( ; ; )M a b c , giả thiết  , , 0;1a b c suy ra điểm M thuộc hình lập phương. Từ đó ta có điểm M thuộc thiết diện của mặt phẳng và hình lập phương. Qua ví dụ này ta thấy trong mỗi nội dung ẩn chứa những hoạt động, giáo viên cần khai thác, hướng dẫn HS phát hiện những hoạt động tương thích với nội dung nhằm góp phần đem lại kết quả giúp HS chiếm lĩnh hoặc vận dụng nội dung đó. 1.2.3. Phân tích các hoạt động thành các hoạt động thành phần Trong quá trình hoạt động, nhiều khi một hoạt động này có thể xuất hiện như một thành phần của hoạt động khác, phân tích được một hoạt động thành những hoạt động thành phần là biết được cách tiến hành hoạt động toàn bộ, nhờ đó có thể vừa quan tâm rèn luyện cho HS hoạt động toàn bộ, vừa chú ý cho HS tập luyện tách riêng những hoạt động thành phần khó hoặc quan trọng khi cần thiết. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 Ví dụ 3: Tìm trên các cạnh AB, BC, CA của tam giác nhọn ABC, các điểm M, N, P sao cho chu vi của tam giác MNP nhỏ nhất. Hoạt động giải bài tập này có thể tách ra thành các hoạt động t

File đính kèm:

  • pdfVan dung phuong phap day hoc kham pha trong day hocbat dang thuc o truong THPT.pdf