Một số đềthi toán trên máy tính casio của các tỉnh thành trên cả nước

A. BẮC NINH

1. Đềthi Giải toán trên máy tính Casio năm 2003 – 2004 (THPT) Tr 5

2. Đềthi Giải toán trên máy tính Casio năm 2004 – 2005 (THPT) Tr 7

3. Đềthi Giải toán trên máy tính Casio năm 2004 – 2005 (THCS) Tr 9

B. CẦN THƠ

1. Đềthi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 6) Tr 11

2. Đềthi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 7) Tr 13

3. Đềthi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 8) Tr 15

4. Đềthi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 9) Tr 17

5. Đềthi Giải toán trên máy tính Casio năm 2001 – 2002 (THPT - LỚP 10) Tr 19

6. Đềthi Giải toán trên máy tính Casio năm 2002 – 2003 (THPT - LỚP 12) Tr 21

7. Đềthi Giải toán trên máy tính Casio năm 2002 – 2003 (THCS - LỚP 9) Tr 23

8. Đềthi Giải toán trên máy tính Casio năm 2004 – 2005 (THPT - LỚP 12) Tr 24

C. ĐỒNG NAI

1. Đềthi Giải toán trên máy tính Casio năm 1998 (THCS) Tr 26

2. Đềthi Giải toán trên máy tính Casio năm 1998 (THPT) Tr 28

D. HÀ NỘI

1. Đềthi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 10 - CẤP TRƯỜNG) Tr 30

2. Đềthi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 10 – Vòng 1) Tr 32

3. Đềthi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 11-12 – CẤP TRƯỜNG) Tr 34

4. Đềthi Giải toán trên máy tính Casio năm 1996 (THCS- Vòng Chung kết) Tr 35

5. Đềthi Giải toán trên máy tính Casio năm 1996 (THPT- Vòng 1) Tr 37

6. Đềthi Giải toán trên máy tính Casio năm 1996 (THPT- Vòng Chung kết) Tr 39

7. Đềthi Giải toán trên máy tính Casio năm 2004 (THPT- Bổtúc) Tr 41

pdf314 trang | Chia sẻ: oanh_nt | Lượt xem: 1652 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Một số đềthi toán trên máy tính casio của các tỉnh thành trên cả nước, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
MỘT SỐ ĐỀ THI TOÁN TRÊN MÁY TÍNH CASIO CỦA CÁC TỈNH THÀNH TRÊN CẢ NƯỚC A. BẮC NINH 1. Đề thi Giải toán trên máy tính Casio năm 2003 – 2004 (THPT) Tr 5 2. Đề thi Giải toán trên máy tính Casio năm 2004 – 2005 (THPT) Tr 7 3. Đề thi Giải toán trên máy tính Casio năm 2004 – 2005 (THCS) Tr 9 B. CẦN THƠ 1. Đề thi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 6) Tr 11 2. Đề thi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 7) Tr 13 3. Đề thi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 8) Tr 15 4. Đề thi Giải toán trên máy tính Casio năm 2001 – 2002 (THCS - LỚP 9) Tr 17 5. Đề thi Giải toán trên máy tính Casio năm 2001 – 2002 (THPT - LỚP 10) Tr 19 6. Đề thi Giải toán trên máy tính Casio năm 2002 – 2003 (THPT - LỚP 12) Tr 21 7. Đề thi Giải toán trên máy tính Casio năm 2002 – 2003 (THCS - LỚP 9) Tr 23 8. Đề thi Giải toán trên máy tính Casio năm 2004 – 2005 (THPT - LỚP 12) Tr 24 C. ĐỒNG NAI 1. Đề thi Giải toán trên máy tính Casio năm 1998 (THCS) Tr 26 2. Đề thi Giải toán trên máy tính Casio năm 1998 (THPT) Tr 28 D. HÀ NỘI 1. Đề thi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 10 - CẤP TRƯỜNG) Tr 30 2. Đề thi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 10 – Vòng 1) Tr 32 3. Đề thi Giải toán trên máy tính Casio năm 1996 (THPT- LỚP 11-12 – CẤP TRƯỜNG) Tr 34 4. Đề thi Giải toán trên máy tính Casio năm 1996 (THCS- Vòng Chung kết) Tr 35 5. Đề thi Giải toán trên máy tính Casio năm 1996 (THPT- Vòng 1) Tr 37 6. Đề thi Giải toán trên máy tính Casio năm 1996 (THPT- Vòng Chung kết) Tr 39 7. Đề thi Giải toán trên máy tính Casio năm 2004 (THPT- Bổ túc) Tr 41 E. HẢI PHÒNG 1. Đề thi Giải toán trên máy tính Casio năm 2002-2003 (THCS- Lớp 8) Tr 42 2. Đề thi Giải toán trên máy tính Casio năm 2002-2003 (THPT- Lớp 11) Tr 44 3. Đề thi Giải toán trên máy tính Casio năm 2002-2003 (THPT- Lớp 10) Tr 46 4. Đề thi Giải toán trên máy tính Casio năm 2003-2004 (THCS- Lớp 9-Vòng 2) Tr 48 5. Đề thi Giải toán trên máy tính Casio năm 2003-2004 (THCS- Lớp 9-Vòng 1) Tr 51 6. Đề thi Giải toán trên máy tính Casio năm 2003-2004 (THCS- Chọn đội tuyển) Tr 53 7. Đề thi Giải toán trên máy tính Casio năm 2006-2007 (THPT) Tr 55 F. HỒ CHÍ MINH 1. Đề thi Giải toán trên máy tính Casio năm 1996 (THCS- VÒNG 1) Tr 56 2. Đề thi Giải toán trên máy tính Casio năm 1996 (THCS- VÒNG CHUNG KẾT) Tr 58 3. Đề thi Giải toán trên máy tính Casio năm 1997 (THPT- VÒNG 1) Tr 60 4. Đề thi Giải toán trên máy tính Casio năm 1997 (THPT- VÒNG CHUNG KẾT) Tr 62 5. Đề thi Giải toán trên máy tính Casio năm 1998 (THCS) Tr 63 6. Đề thi Giải toán trên máy tính Casio năm 1998 (THPT) Tr 64 7. Đề thi Giải toán trên máy tính Casio năm 2003 (THCS) Tr 66 8. Đề thi Giải toán trên máy tính Casio năm 2004 (THPT- CHỌN ĐỘI TUYỂN) Tr 67 9. Đề thi Giải toán trên máy tính Casio năm 2004 (THCS) Tr 68 10. Đề thi Giải toán trên máy tính Casio năm 2004 (THPT) Tr 69 11. Đề thi Giải toán trên máy tính Casio năm 2005 (THCS-CHỌN ĐỘI TUYỂN) Tr 70 12. Đề thi Giải toán trên máy tính Casio năm 2005 (THPT-CHỌN ĐỘI TUYỂN) Tr 71 13. Đề thi Giải toán trên máy tính Casio năm 2005 (THCS) Tr 72 14. Đề thi Giải toán trên máy tính Casio năm 2005 (THPT) Tr 73 15. Đề thi Giải toán trên máy tính Casio năm 2006 (THCS-CHỌN ĐỘI TUYỂN) Tr 74 16. Đề thi Giải toán trên máy tính Casio năm 2006 (THPT-CHỌN ĐỘI TUYỂN) Tr 75 17. Đề thi Giải toán trên máy tính Casio năm 2006 (THCS) Tr 76 18. Đề thi Giải toán trên máy tính Casio năm 2006 (THPT) Tr 77 19. Đề thi Giải toán trên máy tính Casio năm 2006 (THPT-BT) Tr 78 20. Đề thi Giải toán trên máy tính Casio năm 2007 (THPT- LỚP 11) Tr 79 21. Đề thi Giải toán trên máy tính Casio năm 2007 (THCS) Tr 80 22. Đề thi Giải toán trên máy tính Casio năm 2007 (THPT- LỚP 12) Tr 81 23. Đề thi Giải toán trên máy tính Casio năm 2008 (THPT) Tr 82 24. Đề thi Giải toán trên máy tính Casio năm 2008 (THCS) Tr 83 G. HOÀ BÌNH 1. Đề thi Giải toán trên máy tính Casio năm 2003 – 2004 Tr 84 2. Đề thi Giải toán trên máy tính Casio năm 2004 – 2005 Tr 86 3. Đề thi Giải toán trên máy tính Casio năm 2005 – 2006 Tr 87 4. Đề thi Giải toán trên máy tính Casio năm 2006 – 2007 Tr 88 5. Đề thi Giải toán trên máy tính Casio năm 2007 – 2008 Tr 89 H. HUẾ 1. Đề thi Giải toán trên máy tính Casio năm 2004 (Lớp 8) Tr 90 2. Đề thi Giải toán trên máy tính Casio năm 2004 (Lớp 9) Tr 95 3. Đề thi Giải toán trên máy tính Casio năm 2004 (Lớp 11) Tr 100 4. Đề thi Giải toán trên máy tính Casio năm 2004 (Lớp 12) Tr 105 5. Đề thi Giải toán trên máy tính Casio năm 2005 (Lớp 8) Tr 110 6. Đề thi Giải toán trên máy tính Casio năm 2005 (Lớp 9) Tr 118 7. Đề thi Giải toán trên máy tính Casio năm 2005 (Lớp 11) Tr 126 8. Đề thi Giải toán trên máy tính Casio năm 2005 (Lớp 12-BT) Tr 137 9. Đề thi Giải toán trên máy tính Casio năm 2005 (Lớp 12) Tr 145 10. Đề thi Giải toán trên máy tính Casio năm 2006 (Lớp 8) Tr 154 11. Đề thi Giải toán trên máy tính Casio năm 2006 (Lớp 9) Tr 161 12. Đề thi Giải toán trên máy tính Casio năm 2006 (Lớp 11) Tr 169 13. Đề thi Giải toán trên máy tính Casio năm 2006 (Lớp 12-BT) Tr 177 14. Đề thi Giải toán trên máy tính Casio năm 2006 (Lớp 12) Tr 184 15. Đề thi Giải toán trên máy tính Casio năm 2007 (Lớp 8) Tr 194 16. Đề thi Giải toán trên máy tính Casio năm 2007 (Lớp 9) Tr 203 17. Đề thi Giải toán trên máy tính Casio năm 2007 (Lớp 11) Tr 110 18. Đề thi Giải toán trên máy tính Casio năm 2007 (Lớp 12-BT) Tr 218 19. Đề thi Giải toán trên máy tính Casio năm 2007 (Lớp 12) Tr 226 I. KHÁNH HOÀ 1. Đề thi Giải toán trên máy tính Casio năm 2000-2001 (Lớp 9) Tr 233 J. NINH BÌNH 1. Đề thi Giải toán trên máy tính Casio năm 2007-2008 (THCS) Tr 235 K. PHÚ THỌ 1. Đề thi Giải toán trên máy tính Casio năm 2003-2004 (THCS- LỚP 9) Tr 241 2. Đề thi Giải toán trên máy tính Casio năm 2003-2004 (THPT- LỚP 12) Tr 243 3. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THPT- LỚP 9) Tr 245 4. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THBT- LỚP 12-DỰ BỊ) Tr 248 5. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THBT) Tr 251 6. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THPT) Tr 254 7. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THCS) Tr 257 L. QUẢNG NINH 1. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THCS) Tr 260 2. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (THPT) Tr 265 3. Đề thi Giải toán trên máy tính Casio năm 2005-2006 (THCS) Tr 272 4. Đề thi Giải toán trên máy tính Casio năm 2005-2006 (THBT) Tr 281 5. Đề thi Giải toán trên máy tính Casio năm 2005-2006 (THPT) Tr 288 M. THÁI NGUYÊN 1. Đề thi Giải toán trên máy tính Casio năm 2002 (THBT) Tr 292 2. Đề thi Giải toán trên máy tính Casio năm 2002 (THPT) Tr 293 3. Đề thi Giải toán trên máy tính Casio năm 2003 (THBT) Tr 294 4. Đề thi Giải toán trên máy tính Casio năm 2003 (THCS 1) Tr 296 5. Đề thi Giải toán trên máy tính Casio năm 2003 (THCS 2) Tr 297 6. Đề thi Giải toán trên máy tính Casio năm 2003 (THPT) Tr 299 7. Đề thi Giải toán trên máy tính Casio năm 2004 (THBT) Tr 300 8. Đề thi Giải toán trên máy tính Casio năm 2004 (THPT) Tr 301 N. THANH HOÁ 1. Đề thi Giải toán trên máy tính Casio năm 1996 (LỚP 10) Tr 303 2. Đề thi Giải toán trên máy tính Casio năm 1996 (LỚP 11-12) Tr 305 3. Đề thi Giải toán trên máy tính Casio năm 2004-2005 (LỚP 9) Tr 307 4. Đề thi Giải toán trên máy tính Casio năm 2007-2008 (THCS) Tr 311 5. Đề thi Giải toán trên máy tính Casio năm 2007-2008 (HSG) Tr 313 CÔNG TY CP XNK BÌNH TÂY (BITEX) BAN QUẢN TRỊ TRANG WEB WWW.BITEX.EDU.VN SỞ GIÁO DỤC ĐÀO TẠO BẮC NINH ĐỀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO 2004 Thời gian 150 phút ------------------------------------------------------------- ( kết quả tính toán gần nếu không có quy định cụ thể được ngầm hiểu là chính xác tới 9 chữ số thập phân ) Bài 1 : Cho hàm số f(x) = a, Tính gần đúng đến 5 chữ số thập phân giá trị hàm số tại x = 1 + b, Tính gần đúng đến 5 chữ số thập phân giá trị các số a , b sao cho đường thẳng y =ax +b là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = 1 + Bài 2 : Tính gần đúng đến 5 chữ số thập phân giá trị lớn nhất của hàm số f(x)= trên tập các số thực S={x: } Bài 3 : Cho ; với 0 n 998 ≤ ≤ , Tính gần đúng giá trị nhỏ nhất [ ] Bài 4 : Tính gần đúng đến 5 chữ số thập phân giá trị của điểm tới hạn của hàm số f(x) = trên đoạn [0;2 ]π Bài 5 : Trong mặt phẳng toạ độ Oxy , cho hình chữ nhật có các đỉnh (0;0) ; (0;3) ; (2;3) ; (2;0) được dời đến vị trí mới bằng việc thực hiện liên tiếp 4 phép quay góc theo chiều kim đồng hồ với tâm quay lần lượt là các điểm (2;0) ; (5;0) ; (7;0) ; (10;0) . Hãy tính gần đúng đến 5 chữ số thập phân giá trị diện tích hình phẳng giới hạn bởi đường cong do điểm (1;1) vạch lên khi thực hiện các phép quay kể trên và bởi các đường thẳng : trục Ox ; x=1; x=11 Bài 6 : Một bàn cờ ô vuông gồm 1999x1999 ô mỗi ô được xếp 1 hoặc không xếp quân cờ nào . Tìm số bé nhất các quân cờ sao chokhi chọn một ô trống bất kì , tổng số quân cờ trong hàng và trong cột chứa ô đó ít nhất là 199 Bài 7 : Tam giác ABC có BC=1 , góc . Tính gần đúng đến 5 chữ số thập phân giá trị khoảng cách giữa tâm đường tròn nội tiếp và trọng tâm của tam giác ABC. Bài 8 : Tính gần đúng đến 5 chữ số thập phân giá trị các hệ số a, b của đường thẳng y=ax+b là tiếp tuyến tại M(1;2) của Elíp =1 biết Elíp đi qua điểm N(-2; ) Bài 9 : Xét các hình chữ nhật được lát khít bởi các cặp gạch lát hình vuông có tổng diện tích là1 , việc được thực hiện như sau : hai hình vuông được xếp nằm hoàn tàon trong hình chữ nhật mà phần trong của chúng không đè lên nhau các cạnh của 2 hình vuông thì nằm trên hoặc song song với các cạnh của hình chữ nhật . Tính gần đúng không quá 5 chữ số thập phân giá trị nhỏ nhất diện tích hình chữ nhật kể trên Bài 10 : Cho đường cong y = , m là tham số thực. a, Tính gần đúng đến 5 chữ số thập phân giá trị của m để tiệm cận xiên của đồ thị hàm số Tạo với các trục toạ độ tam giác có diện tích là 2 b, Tính gần đúng đến 5 chữ số thập phân giá trị m để đường thẳng y=m cắt đồ thị tại hai điểm A, B sao cho OA vuông góc với OB HẾT UBND TỈNH BẮC NINH ĐỀ THI HỌC SINH GIỎI THPT SỞ GIÁO DỤC ĐÀO TẠO Giải toán trên MTĐT CASIO năm 2004 – 2005 Thời gian : 150 phút ----------------------------------------------------------------- Bài 1 ( 5 điểm ) Trong các số sau 2; ; ; 6 3 4 3 π π π π số nào là nghiệm dương nhỏ nhất của phương trình : 2sin sin 2 cos 2 cosx x x+ = + x Bài 2 ( 5 điểm ) Giải hệ : 2 2 log 4.3 6 7. log 5.3 1 x x x x ⎧ + =⎪⎨ + =⎪⎩ Bài 3 ( 5 điểm ) Cho đa thức : ( ) 3 22 5 1f x x x x= − − + a, Tính ( gần đúng đến 5 chữ số thập phân ) số dư của phép chia f(x) cho 1 2 x⎛ ⎞+⎜ ⎟⎝ ⎠ b, Tính ( gần đúng đến 5 chữ số thập phân ) nghiệm lớn nhất của phương trình : f(x) = 0 Bài 4 ( 5 điểm ) Bài 5 ( 5 điểm ) 1. Tìm tất cả các cặp số tự nhiên (x,y) sao cho x là ước của và y là ước của 2. Chứng minh rằng phương trình có nghiệm tự nhiên khi và chỉ khi a=3 Tìm tất cả các cặp số tự nhiên (x,y) là nghiệm của phương trình 3. Tìm tất cả các bộ số tự nhiên (x,y,z) là nghiệm của phương trình : Bài 6 ( 5 điểm ) : Từ một phôi hình nón chiều cao 12 3h = và bán kính đáy R=5 2 có thể tiện được một hình trụ cao nhưng đáy hẹp hoặc hình trụ thấp nhưng đáy rộng . Hãy tính ( gần đúng 5 chữ số thập phân ) thể tích của hình trụ trong trường hợp tiện bỏ ít vật liệu nhất . Bài 7 ( 5 điểm ) : Cho hàm số y= có đồ thị (C) , người ta vẽ hai tiếp tuyến của đồ thị tại điểm có hoành độ và tại điểm cực đại của đồ thị hàm số . Hãy tính ( gần đúng 5 chữ số thập phân ) diện tích tam giác tao bởi trục tung và hai tiếp tuyến đã cho. Bài 8 ( 5 điểm ) Hãy tính ( gần đúng 4 chữ số thập phân ) là nghiệm của phương trình: Bài 9 ( 5 điểm ) Hãy tính ( gần đúng 4 chữ số thập phân ) Bài 10 ( 5 điểm ) Tìm chữ số hàng đơn vị của số HẾT ĐỀ CHỌN ĐỘI TUYỂN TRUNG HỌC CƠ SỞ (SỞ GIÁO DỤC BẮC NINH NĂM 2005) Bài 1 : 1.1: Tìm tất cả các số có 10 chữ số có chữ số tận cùng bằng 4 và là luỹ thừa bậc 5 của một số tự nhiên. ĐS : 1073741824 , 2219006624 , 4182119424 , 733040224 1.2 : Tìm tất cả các số có 10 chữ số có chữ số đầu tiên bằng 9 và là luỹ thừa bậc năm của một số tự nhiên. ĐS : 9039207968 , 9509900499 Bài 2 : 2.1. Tìm số có 3 chữ số là luỹ thừa bậc 3 của tổng ba chữ số của nó. ĐS : 512 2.2. Tìm số có 4 chữ số là luỹ thừa bậc 4 của tổng bốn chữ số củ nó. ĐS : 2401 2.3. Tồn tại hay không một số có năm chữ số là luỹ thừa bậc 5 của tổng năm chữ số của nó ? ĐS : không có số nào có 5 chữ số thoả mãn điều kiệu đề bài Bài 3 : 3.1. Cho đa thức bậc 4 f(x) = x4+bx3+cx2+dx+43 có f(0) = f(-1); f(1) = f(-2) ; f(2) = f(-3) . Tìm b, c, d ĐS : b = 2 ; c = 2 ; d = 1 3.2. Với b, c, d vừa tìm được, hãy tìm tất cả các số nguyên n sao cho f(n) = n4+bn3+cn2+n+43 là số chính phương. ĐS : n = -7 ; - 2 ; 1 ; 6 Bài 4 : Từ thị trấn A đến Bắc Ninh có hai con đường tạo với nhau góc 600 . Nều đi theo đường liên tỉnh bên trái đến thị trấn B thì mất 32 km ( kể từ thị trấn A), sau đó rẽ phải theo đường vuông góc và đi một đoạn nữa thì sẽ đến Bắc Ninh.Còn nếu từ A đi theo đường bên phải cho đến khi cắt đường cao tốc thì được đúng nữa quãng đường, sau đó rẽ sang đường cao tốc và đi nốt nữa quãng đường còn lại thì cũng sẽ đến Bắc Ninh .Biết hai con đường dài như nhau. 4.1. Hỏi đi theo hướng có đoạn đường cao tốc để đến Bắc Ninh từ thị trấn A thi nhanh hơn đi theo đường liên tỉnh bao nhiêu thời gian( chính xác đến phút), biết vận tốc xe máy là 50 km/h trên đường liên tỉnh và 80 km/ h trên đường cao tốc. ĐS : 10 phút 4.2. Khoảng cách từ thị trấn A đến Bắc Ninh là bao nhiêu mét theo đường chim bay. ĐS : 34,235 km Bài 5 : Với n là số tự nhiên, ký hiệu an là số tự nhiên gần nhất của n . Tính 2005212005 ... aaaS +++= . ĐS : 598652005 =S Bài 6 : 6.1. Giải phương trình : 2233 31533535559 xx xx x xx +−++=+++ ĐS : ( ) 2 253 2,1 −±=x ; ( ) 52 253 6,5,4,3 −±±=x 6.2. Tính chính xác nghiệm đến 10 chữ số thập phân. ĐS : ; ; 618033989,11 ≈x 381966011,12 ≈x ; 850650808,04,3 ±≈x 7861511377,06,5 ±≈x Bài 7 : 7.1. Trục căn thức ở mẫu số : 33 93221 2 −−+=M ĐS : 12972 36 +++=M 7.2 Tính giá trị của biểu thức M ( chính xác đến 10 chữ số) ĐS : 533946288,6=M Bài 8 : 8.1 Cho dãy số , 110 == aa 1 2 1 1 − + += n n n a a a Chứng minh rằng với mọi 013 1221 =+−+ ++ nnnn aaaa 0≥n 8.2. Chứng minh rằng với mọi 11 3 −+ −= nnn aaa 1≥n 8.3.Lập một quy trình tính ai và tính ai với i = 2 , 3 ,,25 Bài 9 : 9.1. Tìm tất cả các cặp số tự nhiên (x,y) sao cho x là ước của y2+1 và y là ước của x2+1 9.2. Chứng minh rằng phương trình x2 + y2 – axy + 1 = 0 có nghiệm tự nhiên khi và chỉ khi a = 3. Tìm tất cả các cặp số tự nhiên ( x, y, z ) là nghiệm của phương trình x2 + y2 – 3xy + 1 = 0 9.3 .Tìm tất cả các cặp số tự nhiên ( x, y, z ) là nghiệm của phương trình x2(y2 - 4) = z2 + 4 ĐS : , y = 3 , nax = 123 −−= nn aaz Bài 10 : Cho một số tự nhiên được biến đổi nhờ một trong các phép biến đổi sau Phép biến đổi 1) : Thêm vào cuối số đó chữ số 4 Phép biến đổi 2) : Thêm vào cuối số đó chữ số 0 Phép biến đổi 3) : Chia cho 2 nếu chữ số đó chẵn Thí dụ: Từ số 4, sau khi làm các phép biến đổi 3) -3)-1) -2) ta được 14014124 )2)1)13)3 ⎯→⎯⎯→⎯⎯→⎯⎯→⎯ 10.1. Viết quy trình nhận được số 2005 từ số 4 10.2. Viết quy trình nhận được số 1249 từ số 4 10.3. Chứng minh rằng, từ số 4 ta nhận được bất kỳ số tự nhiên nào nhờ 3 phép biến số trên. HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THCS, lớp 6, 2001-2002 Bài 1: Tính 1 3 5 7 9 11 13 15 2 4 8 16 32 64 128 256 A = + + + + + + + Bài 2: So sánh các phân số sau: 19 1919 191919 19191919; ; ; 27 2727 272727 27272727 Bài 3: Tính 1994 1993 2 1993 19941994 212121 1992 1992 1994 19931993 1994 434343 B × − ×= − ++ × × Bài 4: Tìm và làm tròn đến sáu chữ số thập phân: 3 0,4 0,09 (0,15 2,5) (2,1 1,965) (1,2 0,045) 0,32 6 0,03 (5,3 3,88) 0,67 0,00325 0,013 C ÷ − ÷ ÷ − ÷ ×= +× + − − + ÷ Bài 5: Tìm x và làm tròn đến chữ số thập phân thứ năm: 13 7 7 1 11,4 2,5 2 4 0,1 70,5 528 7 84 180 18 2 2 A ⎡ ⎤⎛ ⎞ ⎛= × − × ÷ + × ÷ − ÷⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦ ⎞⎟⎠ Bài 6: Tìm x và làm tròn đến bốn chữ số thập phân: 1 1 1 1 1... 140 1,08 [0,3 ( -1)] 11 21 22 22 23 23 24 28 29 29 30 x⎛ ⎞+ + + + + × + ÷ × =⎜ ⎟× × × × ×⎝ ⎠ Bài 7: Một ao cá có 4800 con cá gồm ba loại: trắm , mà, chép. Số mè bằng 3 số trắm, số chép bằng 5 số mè. Tính số lượng mỗi loại cá trong ao. 7÷ 7÷ Bài 8: Tìm các ước chung của các số sau: 222222;506506;714714;999999 Bài 9: Số 19549 là số nguyên tố hay hợp số? Bài 10: Chia số 6032002 cho 1905 có số dư là r . Chia cho 209 có số dư là . Tìm r . 1 1r 2r 2 Bài 11: Hỏi có bao nhiêu số gồm 5 chữ số được viết bởi các chữ số 1,2,3 và chia hết cho 9? Bài 12: Tính diện tích hình thang có tổng và hiệu hai đáy lần lượt là 10,096 và 5,162; chiều cao hình thang bằng 2 3 tích hai đáy. Bài 13: Tính: 11 11 11 11 11 11 1 1 + + + + + + + Bài 14: Tính tổng diện tích của các hình nằm giữa hình thang vàhình tròn ( phần màu trắng ). Biết chiều dài hai đáy hình thang là 3m và 5m, diện tích hình thang bằng 220m Bài 15: Tính diện tích phần hình ( màu trắng ) giới hạn bởi 4 hình tròn bằng nhau có bán kính là 12cm . HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THCS, lớp 7 Bài 1: So sánh các phân số sau: 19 1919 191919 19191919; ; ; 27 2727 272727 27272727 Bài 2: Tìm x và làm tròn đến năm chữ số thập phân: 13 7 7 1 11,4 2,5 2 4 0,1 70,5 528 7 84 180 18 2 2 A ⎡ ⎤⎛ ⎞ ⎛= × − × ÷ + × ÷ − ÷⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦ ⎞⎟⎠ Bài 3: Tìm x và làm tròn đến bốn chữ số thập phân: 3 0,4 0,09 (0,15 2,5) (2,1 1,965) (1,2 0,045) 0,32 6 0,03 (5,3 3,88) 0,67 0,00325 0,013 C ÷ − ÷ ÷ − ÷ ×= +× + − − + ÷ Bài 4: Tính: 12 12 12 12 12 12 12 12 2 + + + + + + + + Bài 5: Dân số nước ta năm 1976 là 55 triệu với mức tăng 2,2 %. Tính dân số nước ta năm 1986. Bài 6: Tính : 2 3 47 22 5 2 16 77 3 2 16 17 4 3 15 20 h ph g h ph g h ph g h ph gD × + ×= × + × Bài 7: Tìm số nguyên dương nhỏ nhất thỏa: chia 2 dư 1, chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, chia 7 dư 6, chia 8 dư 7. Bài 8: Viết quy trình tìm phần dư của phép chia 19052002 cho 20969. Bài 9: |Cho x = 1,8363. Tính 5 4 23 2 3 5 1x x x xC − x + − += + Bài 10: Tìm thời gian để xe đạp hết quãng đường ABC dài 186,7km. Biết xe đi trên quãng đường AB = 97,2km với vận tốc 16,3lm/h và trên quãng đường BC với vận tốc 18,7km/h. Bài 11: Hỏi có bao nhiêu số gồm 6 chữ số được viết bởi các chữ số 2, 3, 7 và chia hết cho 9? Bài 12: Tìm một số gồm ba chữ số dạng xyz biết tổng của ba chữ số bằng phép chia 1000 cho xyz Bài 13: Một người người sử dụng xe có giá trj ban đầu là 10triệu. Sau mỗi năm, giá trị của xe giảm 10% so với năm trước đó. 1) Tính giá trị của xe sau 5 năm. 2) Tính số năm để giá trị của xe nhỏ hơn 3 triệu. Bài 14: Tam giác ABC có đáy BC = 10, đường cao AH = 8. Gọi I và O lần lượt là trung điểm của Ah và BC. Tính diện tích các tam giác IOA và IOC. Bài 15: Tính diện tích phần hình ( màu trắng ) giới hạn bởi 4 hình tròn bằng nhau có bán kính là 9cm . HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THCS, lớp 8, 2001-2002 Bài 1: So sánh các phân số sau: 19 1919 191919 19191919; ; ; 27 2727 272727 27272727 Bài 2: Tính 2 24 100,6 1,25 6 1 325 355 1 5 1 1 5 2 50.61 6 3 2 25 9 4 17 ⎛ ⎞− ÷÷ × ⎜ ⎟⎝ ⎠+ +⎛ ⎞− − ×⎜ ⎟⎝ ⎠ × ÷ Bài 3: Tìm x và làm tròn đến bốn chữ số thập phân: 1 1 1 1 1... 140 1,08 [0,3 ( -1)] 11 21 22 22 23 23 24 28 29 29 30 x⎛ ⎞+ + + + + × + ÷ × =⎜ ⎟× × × × ×⎝ ⎠ Bài 4: Tính: 13 13 13 13 13 13 3 + − + − + − Bài 5: Tìm các ước chung của các số sau: 222222;506506;714714;999999 Bài 6: Chia số 19082002 cho 2707 có số dư là r . Chia cho 209 có số dư là . Tìm r . 1 1r 2r 2 Bài 7: Hỏi có bao nhiêu số gồm 6 chữ số được viết bởi các chữ số 2, 3, 5 và chia hết cho 9? Bài 8: Viết quy trình tìm phần dư của phép chia 19052002 cho 20969. Bài 9: Tìm số nguyên dương nhỏ nhất thỏa: chia 2 dư 1, chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, chia 7 dư 6, chia 8 dư 7, chia 9 dư 8, chia 10 dư 9. Bài 10: Tam giác ABC có đáy BC = 10. đường cao AH = 8. Gọi I và O lần lượt là trung điểm AH và BC . Tính diện tích của tam giác IOA và IOC. Bài 11: Phân tích đa thức thành nhân tử 4 3 2( ) 2 13 14 2P x x x x x= + − − + 4 Bài 12: Tìm một số gồm ba chữ số dạng xyz biết tổng của ba chữ số bằng phép chia 1000 cho xyz Bài 13: Một người bỏ bi vào hợp theo quy tắc: ngày đầu 1 viên, mỗi ngày sau bỏ vào số bi gấp đôi ngày trước đó. Cùng lúc cũng lấy bi ra khỏi hộp theo quy nguyên tắc: ngày đầu và ngày thứ hai lấy một viên, ngày thứ ba trở đi mỗt ngày lấy ra số bi bằng tổng hai ngày trước đó 1) Tính số bi có trong hộp sau 10 ngày. 2) Để số bi có trong hộp lớn hơn 1000 cần bao nhiêu ngày? Bài 14: Cho hình thang vuông ABCD ( )AB CD⊥ , F là điểm nằm giữa CD, AF cắt BC tại E. Biết . Tính diện tích tam giác BEF. 1, 482; 2,7182; 2AD BC AB= = = Bài 15: Tính diện tích phần hình ( màu trắng ) giới hạn bởi 4 hình tròn bằng nhau có bán kính là 13cm . HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THCS, lớp 9, 2001-2002 Bài 1: Tính ( làm tròn đến 6 chữ số thập phân): 43 5 6 7 8 9 11 2 3 4 5 6 7 8 9 1A = − + − + − + − + − 0 0 Bài 2: Tính 2 24 100,6 1,25 6 1 325 355 1 5 1 1 5 2 50.61 6 3 2 25 9 4 17 ⎛ ⎞− ÷÷ × ⎜ ⎟⎝ ⎠+ +⎛ ⎞− − ×⎜ ⎟⎝ ⎠ × ÷ Bài 3: Tính ( làm tròn đến 4 chữ số thập phân): 9 8 7 6 5 4 39 8 7 6 5 4 3 2C = Bài 4: Tìm phần dư của phép chia đa thức: 5 4 3 2(2 1,7 2,5 4,8 9 1) ( 2,2)x x x x x x− − − + − ÷ − Bài 5: Tìm các điểm có tọa độ nguyên dương trên mặt phẳng thỏa mãn: 2x + 5y = 200 Bài 6: Phân tích đa thức thành nhân tử 4 3 2( ) 2 15 26 120P x x x x x= + − − + Bài 7: Một người bỏ bi vào hợp theo quy tắc: ngày đầu 1 viên, mỗi ngày sau bỏ vào số bi gấp đôi ngày trước đó. Cùng lúc cũng lấy bi ra khỏi hộp theo quy nguyên tắc: ngày đầu và ngày thứ hai lấy một viên, ngày thứ ba trở đi mỗt ngày lấy ra số bi bằng tổng hai ngày trước đó 1) Tính số bi có trong hộp sau 15 ngày. 2) Để số bi có trong hộp lớn hơn 2000 cần bao nhiêu ngày? Bài 8: Viết quy trình tìm phần dư của phép chia 26031913 cho 280202. Bài 9: Tính ( cho kết quả đúng và kết quả gần đúng với 5 chữ số thập phân): 11 12 13 14 15 16 17 18 9 + + + + + + + + Bài 10: Tìm số nguyên dương nhỏ nhất thỏa: chia 2 dư 1, chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, chia 7 dư 6, chia 8 dư 7, chia 9 dư 8, chia 10 dư 9. Bài 11: Tìm nghiệm gần đúng với sáu chữ số thập phân của 22 3 3 1,5x x 0+ − = Bài 12: Số nào trong các số 33; ; 3;1,8 7 là nghiệm của phương trình 4 3 22 5 3 1,5552 0x x x− + − = Bài 13: Cho 20cotA= 21 . Tính 2 Asin os 2 Acos sin 2 3 A c B A − = + Bài 14: Cho tam giác ABC có AH là đường cao. Tính độ dài BH và CH biết . 3; 5; 7AB AC BC= = = Bài 15: Tính diện tích phần hình nằm giữa tam giác và các hình tròn bằng nhau có bán kính là 3cm ( phần màu trắng ) HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THPT, lớp 10, 2001-2002 Bài 1: Tìm x ( độ, phút, giây), biết 18 và tanx = 0,706519328 0 270o x< < o Bài 2: Tìm tất cả các nghiệm gần đúng với năm chữ số thập phân của phương trình: 3 5 1 0x x− + = Bài 3: Tam giác ABC có các cạnh 3 2 ; 6 ; 2 3a cm b cm c c= = = m . Tìm giá trị gần đúng với bốn chữ số thập phân của: 1) Độ dài đường phân giác trong AD. 2) Chu vi đường tròn ngoại tiếp tam giác ABC. Bài 4: Giải phương trình ( ghi kết quả đủ 9 chữ số thập phân) 1,342 4,216 3,147 8,616 4,224 7,121 x y x y − = −⎧⎨ + =⎩ Bài 5: Cho cotx = 0,315. Tính giá trị của 3 3 3 8cos -3sin cos 2cos sin sin x x xA x x x += + + Bài 6: Hai số có tổng bằng 9,45583 và có tổng nghịch đảo bằng 0,55617. Tìm hai số đó ( chính xác tới 5 chữ số thập phân). Bài 7: Cho 3 2( )f x x ax bx c= + + + Biết 1 7 1 3 1 89; ; 3 108 2 8 5 500 f f f⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Tính giá trị đúng và giá trị gần đúng với 5 chữ số thập phân của 2 3 f ⎛ ⎞⎜ ⎟⎝ ⎠ . Bài 8: Một hình chữ nhật có độ dài đương chéo bằng 4 4 2+ cm . Tìm độ dài các canhj của hình chữ nhật khi diện tích của nó đạt giá trị lớn nhất ( kết quả lấy gần đúng đến 5 chữ số thập phân) Bài 9: Cho ba đường tròn tiếp xúc ngoài nhau và tiếp xúc với một đường thẳng. Biết rằng bán kính của đường tròn và lần lượt bằng 2cm và 1cm. Tính gần đúng với 5 chữ số thập phân diện tích của phần bị tô đen. 1( )O 2( )O Bài 10: Cho hình chữ nhật ABCD và điểm E trên đường chéo BD sao cho . Kẻ È vuông góc với AB. Cho biết ˆ 15oDAE = 1 2 EF A= B và 2CD cm= . Tính góc EAC ( độ, phút, giây) và độ dài đoạn AB. HẾT SỞ GIÁO DỤC – ĐÀO TẠO ĐỀ THI TUYỂN HỌC SINH GIỎI MÁY TÍNH BỎ TÚI CẦN THƠ THPT, lớp 12

File đính kèm:

  • pdfCASIO3.pdf