I. Kiến thức cần nhớ
* Chó ý: Khi tÝnh nhanh, tÝnh b»ng c¸ch hîp lÝ nhÊt ta cÇn chó ý vËn dông c¸c tÝnh chÊt
trªn cô thÓ lµ:
- Nhê tÝnh chÊt giao ho¸n vµ kÕt hîp nªn trong mét tæng hoÆc mét tÝch tacã thÓ thay ®æi vÞ trÝ c¸c sè h¹ng hoÆc thõa sè ®ång thêi sö dông dÊu ngoÆc ®Ó nhãm c¸c sè thÝch hîp víi nhau råi thùc hiÖn phÐptÝnh tr¬íc.
- Nhê tÝnh chÊt ph©n phèi ta cã thÓ thùc hiÖn theo c¸ch ng¬ưîc l¹i gäi lµ ®Æt thõa sè
25 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 2156 | Lượt tải: 2
Bạn đang xem trước 20 trang mẫu tài liệu Ôn tập hè môn Toán 6, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Buổi 1: LT: PHỐI HỢP CÁC PHẫP TOÁN TRONG N
I. Kiến thức cần nhớ
* Chú ý: Khi tính nhanh, tính bằng cách hợp lí nhất ta cần chú ý vận dụng các tính chất
trên cụ thể là:
- Nhờ tính chất giao hoán và kết hợp nên trong một tổng hoặc một tích tacó thể thay đổi vị trí các số hạng hoặc thừa số đồng thời sử dụng dấu ngoặc để nhóm các số thích hợp với nhau rồi thực hiện phéptính trớc.
- Nhờ tính chất phân phối ta có thể thực hiện theo cách ngược lại gọi là đặt thừa số
chung a. b + a. c = a. (b + c)
II. Bài tập
*.Dạng 1: Các bài toán tính nhanh
Bài 1: Tính tổng sau đây một cách hợp lý nhất.
a/ 67 + 135 + 33 = (67+33)+135 = 235
b/ 277 + 113 + 323 + 87 = (277+323) + (113+87) = 600+200 = 800
Bài 2: Tính nhanh các phép tính sau:
a/ 8 . 17 . 125 = (8 . 125 ). 17 = 1000. 17 = 17.000
b/ 4 . 37 . 25 = (25 . 4 ) . 37 = 100 .37 = 3700
Bài 3: Tính nhanh một cách hợp lí:
a/ 997 + 86 = (997 +3 ) + ( 86 - 3 ) = 1000 + 83 = 1083
b/ 37. 38 + 62. 37 = 37 .( 38 +62) = 37 . 100 = 37 00
c/ 43. 11 = 43. (10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.
67. 101= 6767
Muốn nhõn 1 số cú 2 chữ số với 11 ta cộng 2 chữ số đú rồi ghi kết quả vỏo giữa 2 chữ số đú. Nếu tổng lớn hơn 9 thỡ ghi hàng đơn vị vỏo giữa rồi cộng 1 vào chữ số hàng chục.
vd : 34 .11 =374 ; 69.11 =759
423. 1001 = 423 423
Chỳ ý: muốn nhõn một số cú 3 chữ số với 1001 thỡ kết quả chớnh là 1 số cú được bằng cỏch viết chữ số đú 2 lần khớt nhau
Ví dụ:123.1001 = 123123
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932
Bài 4: Tính nhanh các phép tính:
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào số bị trừ và số trừ
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347
*.Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp
1: Dãy số cách đều: VD: Tính tổng: S = 1 + 3 + 5 + 7 + ... + 49
* Nhận xét:+ số hạng đầu là : 1và số hạng cuối là: 49.
+ Khoảng cách giữa hai số hạng là: 2
+ S có 25 số hạng
Ta tính tổng S như sau:
S = 1 + 3 + 5 + 7 + .. . + 49
S = 49 + 47 + 45 + 43 + .. . + 1
S + S = ( 1 + 49) + ( 3 + 47) + (5 + 45) + (7 + 43) + .. . + (49 + 1)
2S = 50+ 50 +50 + 50 +.. . +50 (có25 số hạng )
2S = 50. 25 S = 50.25 : 2 = 625
*TQ: Cho Tổng : S = a1 + a2 + a3 + a4+……..+ an -1+ an
Trong đó: số hạng đầu là: a1 ;số hạng cuối là: an ; khoảng cách là: d = a2- a1
+Sốsố hạng được tính bằng cách:
số số hạng = ( sốhạng cuối– số hạng đầu):khoảng cách+1
+Tổng S đ ược tính bằng cách:
Tổng S = ( số hạng cuối + số hạng đầu ). Sốsố hạng : 2
S = ( an + a1) . d : 2
+ Vậy số hạng thứ n của dóy được tớnh theo cụng thức an = a1+ d.(n-1)
Bài tập: Tính tổng sau: a) A = 1 + 2 + 3 + 4 + .. . + 100
Trong đó: số hạng đầu là: a1 = 1
số hạng cuốilà: an = 100
khoảng cách là: d = a2- a1 = 2 – 1 = 1
+ Số số hạng được tính bằng cách:
số số hạng của dóy là = (100 - 1): 1+1 = 100
Tổng A đ ược tính bằng cách: A = ( 100 + 1) . 100 : 2 = 5050
b) B = 2 + 4 + 6 + 8 + .. . + 100 Trong đó:
+ số hạng đầu là: 2
+ số hạng cuốilà: 100
+ khoảng cách là: d = a2- a1 = 2
+ Sốsố hạng của dóy là ( 100– 2): 2+1 = 50 số hạng
Tổng B đ ược tính bằng cách: B= ( 100+ 2 ).50 : 2 = 2550
c) C = 4 + 7 + 10 + 13 + .. . + 301 Trong đó:
+ số hạng đầu là: a1 = 4 ;số hạng cuốilà: an = 301
+ khoảng cách là: d = a2- a1 = 7 – 4 = 3
+ số số hạng của dóy là ( 301– 4):3+1= 100
+ tổng C = ( 301 + 4) . 100 : 2 = 15250
d) D = 5 + 9 + 13 + 17 + .. .+ 201. Trong đó:
+ số hạng đầu là: a1=5 ;số hạng cuốilà: an =201
+ khoảng cách là: d = a2- a1= 9 – 5 = 4
+ số số hạng của dóy là ( 201– 5): 4 +1 = 50
Tổng S đ ược tính bằng cách: S = ( 201+ 5 ).50 : 2 = 5150
*Dạng 3: Tìm x
Bài 1: Tỡm x N biết
(x –15) .15 = 0 b) 32 (x –10 ) = 32
x –15 = 0 x –10 = 1
x =15 x = 11
Bài 2: Tỡm x N biết :
a ) (x – 15 ) – 75 = 0 b)575- (6x +70) = 445 c) 315+(125-x) = 435
x –15 =75 6x+70 =575-445 125-x = 435-315
x =75 + 15 = 90 6x =60 x =125-120
x =10 x =5
Bài 3: Tỡm x N biết :
x –105 :21 =15 b) (x- 105) :21 =15
x-5 = 15 x-105 =21.15
x = 20 x-105 =315
x = 420
LUỸ THỪA VỚI SỐ MŨ TỰ NHIấN
I. CÁC KIẾN THỨC CƠ BẢN CẦN NẮM
1. Lũy thừa bậc n của số a là tích của n thừa số bằng nhau, mỗi thừa số bằng a
n thừa số a
( n 0). a gọi là cơ số, n gọi là số mũ.
2. Nhân hai luỹ thừa cùng cơ số
3. Chia hai luỹ thừa cùng cơ số ( a0, m n)
Quy ước a0 = 1 ( a0) ; a1 = a ; 0n = 0 ; 1n = 1
4. Luỹ thừa của luỹ thừa
+ (m, n N )
+ Lũy thừa tầng a(m) = am
5. Luỹ thừa một tích
6. Một số luỹ thừa của 10:
- Một nghìn: 1 .000 = 103
- Một vạn: 10 .000 = 104
- Một triệu: 1 .000 .000 = 106
- Một tỉ: 1. 000. 000. 000 = 109
Tổng quát: nếu n là số tự nhiên khác 0 thì: 10n = 10.10…..10 = 1 00…..0
n chữ số 0
n thừa số 10
7-Trong hệ thập phõn:
cỏc số tự nhiờn đều viết được dưới dạng tổng của cỏc lũy thừa của 10
Vớ dụ = a.1000 +b. 100 +c . 10 + d = a.103 +b.102+c.101+d.100
Tổng quỏt = a1 .10n-1+ a2 10n-2+ a3 .10n-3+…….+ an-1 .101+an .100
Vớ dụ 67435 = 6.104 + 7.103 + 4.102 +3.10 +5
II. Bài tập
*.Dạng 1: Các bài toán về luỹ thừa
Bài 1: Viết các tích sau đây dưới dạng một luỹ thừa của một số:
a/ A = 82.324 A = 26.220 = 226. hoặc A = 43.410= 413
b/ B = 273.94.243 = (33 )3 .(32 )4 .35 = 39 .38.35 = 39+8+5 = 322
c/ C =25.23.22.2 = 25+3+2+1 =211
Bài 2: Tìm các số mũ n sao cho luỹ thừa 3n thỏa mãn điều kiện: 25 < 3n < 250
Giải: Ta có: 32 = 9,
33 = 27 > 25,
34 = 81,
35 = 243 250
Vậy với số mũ n = 3,4,5 ta có 25 < 3n < 250
Bài 3: So sách các cặp số sau:
a/ A = 275 và B = 2433
Nhận xột 27 và 243 đều chia hết cho 3
Nờn ta viết A và B về lũy thừa cựng cơ số 3
Ta có A = 275 = (33)5 = 315 và B = (35)3 = 315 Vậy A = B
b/ A = 2 300 và B = 3200
Nhận xột 2 số mũ của 2 lũy thừa là 300 và 200 đều chia hết cho 100
Nờn ta viết A và B về lũy thừa cựng số mũ 100
A = 2 300 = 23.100 = (23)100= 8100 và B = 3200 = 32.100 = (3 2 )100 = 9100
Vì 8 < 9 nên 8100 < 9100 và A < B.
Ghi nhớ:
+Trong hai luỹ thừa có cùng cơ số, luỹ thừa nào có số mũ lớn hơn thì lớn hơn.
+ Trong hai luỹ thừa có cùng số mũ , luỹ thừa nào có cơ số lớn hơn thì lớn hơn
+ Để so sỏnh cỏc lũy thừa ta đưa về cựng cơ số hoặc cựng số mũ
Bài 4: Biểu diễn cỏc số sau dưới dạng tổng cỏc lũy thừa của 10
a) 20012003 = 2.107 +1.104 + 2.103 +3.100
b) 987654321 = 9.108+8.107+7.106+6.105+5.104+4.103+3.102+2.101+1.100
Bài tập tự luyện
Bài 1 (bài 71trang 12 sỏch 500 bài toỏn chọn lọc )
Thực hiện phộp tớnh :
a) 25 . 83 - 23. 83 b) 54 -2.53
c) 600: {450 : [450 - ( 4.53 – 23.52 ) ] }
d) ( 25.37.5 9) : (23.35.57 ) (bài 39a trang 30 sỏch cỏc dạng toỏn THCS)
Bài 2 (bài 65trang 11 sỏch 500 bài toỏn chọn lọc )
So sỏnh cỏc số sau
a) 714 và 507
b) 530 và 12410
c) 921 và 7297
d) 3111 và 1714
Bài 3 Tỡm x biết
(72000+18000) - (3x + 3000) = 12000
[ 3. (x + 2 ) : 7 ] . 4 =120
2480 – 4710 : 3 + [200 – (x – 5)] =1010
(x + 1) + (x + 2) + (x + 3) + …. +(x + 99 ) + (x + 100 ) = 5750
TÍNH CHẤT CHIA HẾT – CÁC DẤU HIỆU CHIA HẾT
I.Cỏc kiến thức cơ bản cần nhớ:
1. Cho 2 số tự nhiờn a và b nếu cúachia hết cho bthỡ ta núi a là bội của b cũn b là ước của a
a b a là bội của b
b là ước của a
2. - Tập hợp các ước của a là Ư(a)
- Tập hợp các bội của a là B(a)
+ Muốn tìm bội của 1 số: Nhân số đó lần lượt với 0, 1, 2, 3, …
+Muốn tìm ước của a: Ta chia a lần lượt cho các số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào thì số ấy là ước của a.
3.Tớnh chỏt chia hết của 1 tổng
Tính chất 1: + a m , b m , c m ị (a + b + c) m
+ a m , b m , ị (a - b) m
Tính chất 2: a m , b m , c m ị (a + b + c) m
. a m , b m , ị (a - b) m Các tính chất 1& 2 cũng đúng với một tổng(hiệu) nhiều số hạng.
4.Tớnh chất chia hết của 1 tớch: Nếu 1 thừa số của 1 tớch chia hết cho 1 số thỡ tớch cũng chia hết cho số đú
5.Cỏc dấu hiệu chia hết
+ Dấu hiệu chia hết cho 2: Các số có chữ số tận cùng là chữ số chẵn thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
+ Dấu hiệu chia hết cho 5: Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
+ Dấu hiệu chia hết cho 3:
Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.
+ Dấu hiệu chia hết cho 9
Số cú tổng cỏc chữ số chia hết cho 9 thỡ chia hết cho 9và chỉ những số đú mới chia hết cho 9
Chú ý: Số chia hết cho 9 thì chia hết cho 3. Số chia hết cho 3 có thể không chia hết cho 9.
+ Dấu hiệu chia hết cho 4
Một số chia hết cho 4 khi và chỉ khi số tạo bởi 2 chữ số tận cựng của số đú chia hết cho 4
M = chia hết cho 4 chia hết cho 4
+ Dấu hiệu chia hết cho 25
Một số chia hết cho 25 khi và chỉ khi số tạo bởi 2chữ số tận cựng của số đú chia hết cho 25
M = chia hết cho 25 chia hết cho 25
Số đú cú 2 chữ số tận cựng cú dạng 00 ; 25 ;50 ; 75
+Dấu hiệu chia hết cho 8
Một số chia hết cho 8 khi và chỉ khi số tạo bởi 3 chữ số tận cựng của số đú chia hết cho 8
M = chia hết cho 25 chia hết cho 8
II. Bài tập
1.BT 1: Xét xem các hiệu sau có chia hết cho 6 không?
a/ 66 – 42
Ta có: 66 6 , 42 6 ị 66 – 42 6.
b/ 60 – 15
Ta có: 60 6 , 15 6 ị 60 – 15 6.
BT 2: Xét xem tổng nào chia hết cho 8?
a/ 24 + 40 + 72
24 8 , 40 8 , 72 8 ị 24 + 40 + 72 8.
b/ 80 + 25 + 48.
80 8 , 25 8 , 48 8 ị 80 + 25 + 48 8.
c/ 32 + 47 + 33.
32 8 , 47 8 , 33 8 nhưng
47 + 33 = 80 8 ị 32 + 47 + 33 8.
Bài 3: Cho A = 12 + 15 + 21 + x với x N.
Tìm điều kiện của x để A 3, A 3.
Bài 4: Khi chia STN a cho 24 được số dư là 10. Hỏi số a có chia hết cho 2 không, có chia hết cho 4 không?
Giải:
Số a có thể được biểu diễn là: a = 24.k + 10.
Ta có: 24.k 2 , 10 2 ị a 2.
24. k 2 , 10 4 ị a 4.
II. Bài tập tự luyện
Bài 1: số , thay dấu * bởi chữ số nào để:
a/ A chia hết cho 2; b/ A chia hết cho 5; c/ A chia hết cho 2 và cho 5
Bài 2: Cho số , thay dấu * bởi chữ số nào để:
a/ B chia hết cho 2; b/ B chia hết cho 5; c/ B chia hết cho 2 và cho 5
Bài 3: Thay mỗi chữ bằng một số để: a/ 972 + chia hết cho 9.; b/ 3036 + chia hết cho 3
Bài 4:
Điền vào dẫu * một chữ số để được một số chia hết cho 3 nhưng khụng chia hết cho 9
a/ b/
Bài 5: Tỡm số dư khi chia mỗi số sau cho 9, cho 3: 8260 ; 1725; 7364 ;
GIẢI BÀI
Bài 1: a/ vỡ * ở chữ số tận cựng nờn A 2 thỡ * { 0, 2, 4, 6, 8}
vậy ta được cỏc số 2000 ; 2002;2004;2006;2008 chia hết cho 2
b/ vỡ * ở chữ số tận cựng nờn A 5 thỡ * { 0, 5} vậy ta được cỏc số 2000;2005 chia hết cho 5
c/ vỡ * ở chữ số tận cựng nờn A 2 và A 5 thỡ * { 0} vậy ta được cỏc số 2000 chia hết cho 2 và 5
Bài 2: a/ Vỡ chữ số tận cựng của B là 5 khỏc 0, 2, 4, 6, 8 nờn khụng cú giỏ trị nào của * để B2
b/ Vỡ chữ số tận cựng của B là 5 nờn B5 khi * {0, 1, 2, 3,4, 5, 6, 7, 8, 9}
vậy ta được cỏc số 2005; 2015 2005;2035;2045;2055;2065;2075;2085;2095 chia hết cho 5
c/ Vỡ chữ số tận cựng của B là 5 Khụng cú giỏ trị nào của * để B chia hết cho cả 2 và 5
Bài 3: a/ Do 972 9 nờn (972 + ) 9 khi 9. Ta cú 2+0+0+a = 2+a, (2+a) 9
khi a = 7. vậy khi a = 7 thỡ 972 + = 927 + 2007 chia hết cho 9
b/ Do 3036 3 nờn 3036 + 3 khi 3.
Ta cú 5+2+a+2+a = 9+2a, (9+2a)3 khi 2a3 a = 3; 6; 9
vậy ta được cỏc số 52362 ; 52626 ;52929 thỏa món chia hết cho 3
Bài 4: a/ Theo đề bài ta cú (2+0+0+2+*) 3 nhưng (2 + 0 + 0+ 2 + * ) = (4 + *) khụng chia hết 9
4 + * = 6 hoặc 4 + * = 12 nờn * = 2 hoặc * = 8.
vậy ta được cỏc số 20022, 20028 chia hết cho 3 nhưng khụng chia hết cho 9.
b/ Theo đề bài ta cú (* + 9 + 9 +8+ 4 ) 3 * = 3 ; * = 9
nhưng (* + 9 + 9 +8+ 4 ) khụng chia hết 9
* = 3 hoặc * = 9 .
vậy ta được cỏc số 39984, 99984 chia hết cho 3 nhưng khụng chia hết cho 9.
Bài 5: Ta cú
Vậy : số 8260 cú tổng cỏc chữ số là 16 khi chia cho 9 thỡ dư 7 nờn 8260 khi chia cho 9 thỡ cũng dư 7.
Số 8260 cú tổng cỏc chữ số là 16 khi chia cho 3 thỡ dư 1 nờn 8260 khi chia cho 3 thỡ cũng dư 1
+ số 1725 cú tổng cỏc chữ số là 15 khi chia cho 9 thỡ dư 6 nờn 1725 khi chia cho 9 thỡ cũng dư 6
+ số 1725 cú tổng cỏc chữ số là 15 khi chia cho 3 dư 0 nờn 1725 khi chia cho 3 thỡ cũng dư 0
+ số 7364 cú tổng cỏc chữ số là 20 khi chia cho 9 thỡ dư 2 nờn 7364 khi chia cho 9 thỡ cũng dư 2
+ số 7364 cú tổng cỏc chữ số là 20 khi chia cho 3 thỡ dư 2 nờn 7364 khi chia cho 3 thỡ cũng dư 2
Ghi nhớ
+ Số cú tổng cỏc chữ số khi chia cho 9 thỡ dư bao nhiờu thớ khi chia số đú cho 9 thỡ cũng dư bấy nhiờu
+ Số cú tổng cỏc chữ số là khi chia cho 3 thỡ dư bao nhiờu thỡ khi chia số đú cho 3 thỡ cũng dư bấy nhiờu
Buổi 2 . LUYỆN TẬP VỀ PHÂN TÍCH 1 SỐ RA THỪA SỐ NGUYấN TỐ - ƯC –BC
I.Cỏc kiến thức cơ bản cần nhớ:
1. Thế nào là phân tích một số ra thừa số nguyên tố?
Phõn tớch 1 số tự nhiờn lớn hơn 1 ra thừa số nguyờn tố là viết số đú dưới dạng tớch cỏc thừa số nguyờn tố
2.Cỏch phõn tớch 1 số ra thừa số nguyờn tố
Ta chia số đú cho cỏc số nguyờn tố từ nhỏ đến lớn
3: Ước chung của hai hay nhiều số là gi? x ƯC(a; b) khi nào?
Ước chung của hai hay nhiều số là ước của tất cả cỏc số đú
x ƯC(a,b) nếu a x và b x
4.Bội chung của 2 hay nhiếu số là bội của tất cả cỏc số đú
x BC(a,b) nếu x a và x b
5 .Một số tự nhiên gọi là số hoàn chỉnh nếu tổng tất cả các ước của nó gấp hai lần số đó.
VD 6 là số hoàn chỉnh vì Ư(6) = {1; 2; 3; 6} và 1 + 2 + 3 + 6 = 12
II. Bài tập ỏp dụng :
Bài1: : Hãy phân tích các số sau ra thừa số nguyên tố:48,105;286:
48 2 105 3 286 2
24 2 35 5 143 11
12 2 7 7 13 13
6 2 1 1
3 3
1 Vậy 48 = 24.3; 105 = 3.5.7; 286 =2.11.13
Bài 2: Phân tích các số 120, 900, 100000 ra thừa số nguyên tố
ĐS: 120 = 23. 3. 5; 900 = 22. 32. 52; 100000 = 105 = 22.55
Bài 3: a. Tớch của 2 số tự nhiờn bằng 75. tỡm hai số đú
b. Tớch của 2 số tự nhiờn a và b bằng 36. tỡm a và b biết a < b
Giải:
a. Gọi 2 số tự nhiờn phải tỡm là: a và b ta cú: a.b = 75; Phõn tớch 75 ra thừa số nguyờn tố: 75= 3.52
Vì a.b = 75 nờn cỏc số a và b là ước của 75. Ta cú:
a
1
3
5
15
25
75
b
75
25
15
5
3
1
b. Giả tương tự như cõu a với a < b. Đỏp số: aẻ {1;2;3;4}. B ẻ{36;1;2;9}
Bài 4: Học sinh lớp 6A đ ược nhận phần th ưởng của nhà tr ường và mỗi em được nhận phần thưởng như nhau. Cô hiệu trưởng đã chia hết 129 quyển vở và 215 bút chì màu. Hỏi số học sinh lớp 6A là bao nhiêu?
Hướng dẫn
Nếu gọi x là số HS của lớp 6A thì ta có: 129x và 215x ; Hay x là ước của 129 và của 215
Ta có 129 = 3. 43; 215 = 5. 43 => Ư(129) = {1; 3; 43; 129} ; Ư(215) = {1; 5; 43; 215}
Vậy x {1; 43}. Nhưng x không thể bằng 1. Vậy x = 43.
*Dạng toỏn tỡm số ước của 1 số
VD: - Ta có Ư(20) = {1, 2, 4, 5, 10, 20}. Số 20 có tất cả 6 ước.
- Phân tích số 20 ra thừa số nguyên tố, ta được 20 = 22. 5
So sánh tích của (2 + 1). (1 + 1) với 6. Từ đó rút ra nhận xét gì?
Bài 1: a/ Số tự nhiên khi phân tích ra thừa số nguyên tố có dạng 22 . 33. Hỏi số đó có bao nhiêu ước?
b/ A = p1k. p2l. p3m có bao nhiêu ước?
Hướng dẫn
a/ Số đó có (2+1).(3+1) = 3. 4 = 12 (ước). b/ A = p1k. p2l. p3m có (k + 1).(l + 1).(m + 1) ước
Ghi nhớ: Người ta chứng minh được rằng: Số các ước của một số tự nhiên a bằng một tích mà các thừa số là các số mũ của các thừa số nguyên tố của a cộng thêm 1
a = pkqm.. .rn => Số phần tử của Ư(a) = (k+1)(m+1).. .(n+1)
Bài 2: Hãy tìm số phần tử của Ư(252): ĐS: 18 phần tử.
III. Bài tập tự luyện
Bài 1: Viết các tập hợp a/ Ư(6), Ư(12), Ư(42) và ƯC(6, 12, 42); b/ B(6), B(12), B(42) và BC(6, 12, 42)
Bài 2: Viết tất cả cỏc ước của 7.13 ; 33 ; 32.52 ; 22.73
Bài 3: Tỡm số chia và thương của 1 phộp chia cú số bị chia bằng 145 và số dư bằng 12 (thuơng khỏc 1 và số chia ; thương là cỏc số tự nhiờn
Bỏi 4: Tỡm cỏc số tự nhiờn x và y sao cho
( 2x +1).((y – 3 ) = 10 c) x + 6 = y ( x -1 ) c) ( 3x – 2) .(2y - 3 ) = 1
Giải: a) Ta cú ( 2x +1).((y – 3 ) = 10 2x + 1; y – 3 là ước của 10; Đk : x và y N ; y > 3
Mà Ư (10) = {1;2;5;10 } 2x + 1 luụn là số lẻ ta cú bảng sau:
2x +1
y - 3
x
y
1
10
0
13
5
2
2
5
Vậy ta cú cỏc cặp số thỏa món là x = 0 thỡ y = 13; x = 2 thỡ y = 5
3x - 2
2y - 3
x
y
1
1
1
2
b)Ta cú ( 3x – 2) .(2y - 3 ) = 1 3x – 2; 2y – 3 là ước của 1 và x và y N
Mà Ư(1) = {1 } Ta cú bảng sau:
Vậy x = 1 và y = 2 thỏa món
c) x + 6 = y (x -1 ) y = (x + 6): (x – 1) x + 6 - (x – 1) (x – 1) 7 x – 1 x – 1 là Ư(7) = {1; 7 }
Với x – 1 = 1 x = 2 y = 8; Với x – 1 = 7 x = 8 y = 2
A. Bài tập tổng hợp về ƯC - BC :
Bài 1 Tỡm 2 số a ,b biết a + b = 288 và UCLN(a ;b) = 24
Giải : Gọi 2 số phải tỡm là a ,b (giả sử a ≤ b).ta cú a+b = 288 và (a,b) = 24
a = 24 .k và b = 24.k’ trong đú (k,k’) = 1 và k ≤ k’
Do đú 24 .k + 24.k’= 288 24.(k + k’ ) =288 k + k’ = 12 ; Mà 12 = 11 + 1 = 5 + 7
Với k = 1 k’ = 11 a = 24 và b = 24.11 = 264
Với k = 5 k’ = 7 a = 24.5 = 120 và b = 7 .24 = 168
Vậy 2 số phải tỡm là 24 và 264 ; 120 và 168
Bài 2 : Tỡm 2 số a b biết a.b = 4320 và [a ;b] = 360
Giải : Gọi 2 số phải tỡm là a ,b (giả sử a ≤ b) ; d = (a ,b) a = d k và b = d . k’ trong đú (k,k’) = 1
Mà [a ;b] = a.b = k.k’.d2 và [a ;b] = k . k’ .d
Theo đề bài ta cú d = = 12 và k.k’ = = 30 k ;k’ là Ư(30) Nờn ta cú
k
k’
a
b
1
30
12
360
2
15
24
180
3
10
36
120
5
6
60
72
Vậy cỏc cặp số phải tỡm là 12 và 360 ; 24 và 180 ; 36 và 120 ; 60 và 72
Bài 3 : Tỡm số tự nhiờn x biết rằng khi chia x cho 4 ;5 ;6 đều dư 1 và x chia hết cho 7 và nhỏ hơn 400
Giải : Vỡ x chia cho 4 ; 5 ; 6 đều dư 1 nờn x – 1 là bội chung của 4 ;5 ;6
Ta cú BCNN(4,5,6) = 22.3.5 = 60 BC(4,5,6) = B (60) ={0 ;60 ;120 ;180 ;240 ;300 ;360 ;420…….}
X{1 ;61 ;121 ;181 ;241 ;301 ;421……} Mà x < 400 và x chia hết cho 7 nờn chỉ cú 301 thoả món
Vậy x = 301
Bài 4: Tỡm ƯC của a/ 12, 80 và 56 ; b/ 144, 120 và 135 ; c/ 150 và 50 ; d/ 1800 và 90
Bài giải
a/ 12 = 22.3 80 = 24. 5 56 = 33.7. Vậy ƯCLN(12, 80, 56) = 22 = 4.ƯC( 12 ;80 ;56 ) = { 1 ;2 ;4}
b/ 144 = 24. 32 120 = 23. 3. 5 135 = 33. 5.
Vậy ƯCLN (144, 120, 135) = 3. ƯC( 144 ;120 ;135 ) = { 1 ;3 }
c/ ƯCLN(150,50) = 50 vỡ 150 chia hết cho 50. ƯC( 150 ;50 ) = { 1 ;2 ;5 ;10 ;25 ;50}
d/ ƯCLN(1800,90) = 90 vỡ 1800 chia hết cho 90.
ƯC( 1800 ;90 ) = { 1 ;2 ;3 ;5 ;6 ;9 ;10 ;15 ;18 ;30 ;45 ;90}
Bài 5: Tỡm a/ BC (24, 10) ; b/ BC( 8, 12, 15)
Bài giải a/ 24 = 23. 3 ; 10 = 2. 5
BCNN (24, 10) = 23. 3. 5 = 120 BC( 24 ;10 ) = B(120)= { 0 ;120 ;240 ;360 ……..}
b/ 8 = 23 ; 12 = 22. 3 ; 15 = 3.5
BCNN( 8, 12, 15) = 23. 3. 5 = 120 BC( 8 ;12 ;15 )= B(120) = { 0 ;120 ;240 ;360 ……}
Bài 6: Một lớp học có 24 HS nam và 18 HS nữ. Có bao nhiêu cách chia tổ sao cho số nam và số nữ được chia đều vào các tổ?
Hướng dẫn: Số tổ là ước chung của 24 và 18. Tập hợp các ước của 18 là A =
Tập hợp các ước của 24 là B =
Tập hợp các ước chung của 18 và 24 là C = A B = Vậy có 3 cách chia là 2 hoặc 3 hoặc 6 tổ.
Bài 7: Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, hoặc 25 người, hoặc 30 người đều thừa 15 người. Nếu xếp mỗi hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài hàng). Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000?
Hướng dẫn: Gọi số người của đơn vị bộ đội là x (xN); x : 20 dư 15 x – 15 20; x : 25 dư 15 x – 15 25; x : 30 dư 15 x – 15 30 Suy ra x – 15 là BC(20, 25, 35)
Ta có 20 = 22. 5; 25 = 52 ; 30 = 2. 3. 5 => BCNN(20, 25, 30) = 22. 52. 3 = 300
BC(20, 25, 35) = 300k (kN)
x – 15 = 300k x = 300k + 15 mà x < 1000 nên số người của đơn vị chia hết cho 41 nờn chỉ cú 615
Vậy đơn vị bộ đội có 615 người
ễN TẬP VỀ TIA, ĐOẠN THẲNG TRUNG ĐIỂM ĐOẠN THẲNG .
I. Ghi nhớ:
1. Tia: Hỡnh gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O, cũn gọi là một nửa đường thẳng gốc O.
- Khi đọc (hay viết) tờn một tia, phải đọc (hay viết) tờn gốc trước.
- Hai tia chung gốc và tạo thành một đường thẳng gọi là hai tia đối nhau.
- Chỳ ý: Mỗi điểm trờn đường thẳng là gốc chung của hai tia đối nhau. Hai tia Ox, Oy đối nhau. Nếu điểm A thuộc tia Ox và điểm B thuộc tia Oy thỡ điểm O nằm giữa hai điểm A và B.
- Hai tia trựng nhau cú cựng gốc và cú một điểm chung khỏc gốc.
- Hai tia khụng trựng nhau cũn được gọi là hai tia phõn biệt.
2. Đoạn thẳng: Đoạn thẳng AB là hỡnh gồm điểm A, điểm B và tất cả cỏc điểm nằm giữa A và B. Cỏc điểm A, B gọi là hai mỳt (hoặc hai đầu) đoạn thẳng AB.
- Khi hai đoạn thẳng cú một điểm chung, ta núi hai đoạn thẳng ấy cắt nhau.
- Mỗi đoạn thẳng cú một độ dài. Độ dài đoạn thẳng là một số lớn hơn 0
Độ dài đoạn thẳng AB cũng cũn gọi là khoảng cỏch giữa hai điểm A và B.
+ Khi hai điểm A và B trựng nhau, ta núi độ dài bằng 0.
+ Hai đoạn thẳng bằng nhau nếu cú cựng độ dài.
+ Đoạn thẳng lớn hơn nếu cú độ dài lớn hơn.
- Trờn một tia gốc O, với bất kỡ số m > 0, bao giờ cũng xỏc định được một điểm M để độ dài OM = m.
- Trờn tia Ox, nếu hai điểm M, N với OM = a, ON = b và 0 < a < b thỡ điểm M nằm giữa hai điểm O và N.
- Nếu điểm M nằm giữa hai điểm A và B thỡ AM + MB = AB.
Ngược lại nếu AM + MB = AB thỡ điểm M nằm giữa hai điểm A và B
3. Trung điểm của đoạn thẳng: Là điểm nằm giữa và cỏch đều hai đầu đoạn thẳng.
Trung điểm của đoạn thẳng cũn gọi là điểm chớnh giữa của đoạn thẳng.
Túm tắt:
hoặc
II. BÀI TẬP : 1. Xem hỡnh vẽ, điền cỏc cõu sau đõy :
a/ Cắt nhau b/ Nằm giữa c/ Giao nhau d/ Thẳng hàng
e/ Đối nhau, vào chỗ trống (………) cho đủ nghĩa
1) Điểm C ……………………………hai điểm B và D
2) Hai tia CB và CD là hai tia.........................................
3) Ba điểm B , C, D.......................................................
4) B là ………......................của hai đường thẳng a và b
5) Hai đường thẳng a và d ….......…………………tại C
2. Cho đoạn thẳng AB , M là trung điểm của đoạn thẳng AB nếu
A. MA = MB và MA + MB = AB B. MA =
C. MB = D. M nằm chính giữa A và B
3. Cho 4 điểm A;B; C; D trong đó không có 3 điểm nào thẳng hàng , kẻ các đường thẳng đi qua các cặp điểm đó . Số đường thẳng ( phân biệt kẻ được là )
A. 4 B . 5 C . 6 D. 7
B. BÀI TẬP TỰ LUYỆN:
1. Vẽ lần lượt đoạn thẳng AB , tia AB , đường thẳng AB trờn cựng một hỡnh
2.Cho đoạn thẳng EF dài 5 cm . Trờn tia EF lấy điểm I sao cho EI = 2,5 cm
a/ Điểm I cú nằm giữa hai điểm E và F khụng ? Vỡ sao ?
b/ So sỏnh EI và IF. I cú là trung điểm của EF khụng ?
3. Vẽ tia Ox.Vẽ 3 điểm A;B; C trên tia Ox sao cho OA = 4cm; OB = 6cm; OC = 8cm.
a) Tính độ dài các đoạn thẳng AB; BC?
b) Điểm B có là trung điểm của đoạn thẳng AC không ? Vì sao
4. Vẽ đường thẳng a; b trong các trường hợp: a) Cắt nhau tại điểm I b) Song song.
5, Cho đoạn thẳng MP = 8cm , N là một điểm thuộc đoạn thẳng MP, biết MN = 2cm , I là trung điểm của đoạn thẳng NP. Tính độ dài đoạn thẳng IP.
HD; Vẽ hình
Vì N MP , MN < MP ( 2cm < 8 cm)
Nên điểm N nằm giữa hai điểm M,P Do đó MN + NP = MP
hay 2 + NP = 8 => NP = 8 - 2 = 6 (cm)
Vì I là trung điểm của đoạn thẳng NP nên IP = = 3 (cm)
7. Cho hai tia Ax và Ax’ đối nhau. Trờn tia Ax lấy điểm B sao cho AB = 7cm, trờn tia Ax’ lấy điểm C sao cho AC = 7cm.
a) A cú phải là trung điểm của BC khụng? Vỡ sao?
Trờn tia Ax’ lấy điểm M sao cho AM = 9cm, trờn tia Ax lấy điểm N sao cho AN = 8cm. Tớnh CM, BN
Buổi 3 LT: SỐ NGUYấN CỘNG, TRỪ, NHÂN SỐ NGUYấN
LT CỘNG, TRỪ SỐ NGUYấN
Bài 1 : Tính a) (-50) + (-10) b) (-16) + (-14) c) (-367) + (-33)
d) 43 + (-3) e) (-25) + 5 f) (-14) + 16
Bài 2: Tớnh nhanh: a/ 234 - 117 + (-100) + (-234) b/ -927 + 1421 + 930 + (-1421)
HD giải: a/ dựng tớnh chất giao hoỏn và kết hợp ta được kết quả 17
b/ dựng tớnh chất giao hoỏn và kết hợp ta được kết quả 3
Bài 3: Tớnh: a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
HD giải: a/ 11 - 12 + 13 – 14 + 15 – 16 + 17 – 18 + 19 – 20
= [11 + (-12)] + [13 + (-14)] + [15 + (-16)] + [17 + (-18)] + [19 + (-20)]
= (-1) + (-1) + (-1) + (-1) + (-1) = -5
b/ 101 – 102 – (-103) – 104 – (-105) – 106 – (-107) – 108 – (-109) – 110
= 101 – 102 + 103 – 104 + 105 – 106 + 107 – 108 + 109 – 110 = (-1) + (-1) + (-1) + (-1) + (-1) = -5
Bài 4: Thực hiện phộp trừ: a/ (a – 1) – (a – 3) b/ (2 + b) – (b + 1) Với a, b
HD giải: a/ (a – 1) – (a – 3) = (a – 1) + (3 - a) = [a + (-a)] + [(-1) + 3] = 2
b/ Thực hiện tương tự ta được kết quả bằng 1.
Bài 5: a/ Tớnh tổng cỏc số nguyờn õm lớn nhất cú 1 chữ số, cú 2 chữ số và cú 3 chữ số.
b/ Tớnh tổng cỏc số nguyờn õm nhỏ nhất cú 1 chữ số, cú 2 chữ số và cú 3 chữ số.
c/ Tớnh tổng cỏc số nguyờn õm cú hai chữ số.
HD giải: a/ (-1) + (-10) + (-100) = -111 b/ (-9) + (-99) = (-999) = -1107
Bài 6: Tớnh tổng: a/ (-125) +100 + 80 + 125 + 20 b/ 27 + 55 + (-17) + (-55)
c/ (-92) +(-251) + (-8) +251 d/ (-31) + (-95) + 131 + (-5)
Bài 7: Tỡm x biết: a/ - x + 8 = -17 b/ 35 – x = 37 c/ -19 – x = -20 d/ x – 45 = -17
HD giải: a/ x = 25 b/ x = -2 c/ x = 1 d/ x = 28
Bài 8 : Tìm tập hợp các số nguyên x thoả mãn :
a) - 2 < x < 5 b) -6 Ê x Ê -1 c) 0 < x Ê 7 d) -1 Ê x < 6
Bài 9: Tìm số nguyên x biết rằng:
1) x - 7 = -5 2) | x | = 3 3) | x | + 5 = 8 4) 8 – x = 12
5) 6x – 39 = 5628 : 28 6) 82 + (200 – x ) = 123 7) x + 10 = -14 8) 5x – 12 = 48
9) |x – 3| -
File đính kèm:
- on tap he.doc