A> MỤC TIÊU
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.
- Hướng dẫn HS cách sử dụng máy tính bỏ túi.
- Giới thiệu HS về ma phương.
B> NỘI DUNG
I. Ôn tập lý thuyết.
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?
3 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 2873 | Lượt tải: 4
Bạn đang xem nội dung tài liệu Trường THCS Mai Lâm - Giáo án: Tự chọn Toán 6 - Chủ đề 2: Các phép tính về số tự nhiên, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày dạy: …../…/2008 Tuần: 5 Tiết: 3
Chủ đề 2: Các phép tính về số tự nhiên
MỤC TIÊU
- Ôn tập lại các tính chất của phép cộng và phép nhân, phép trừ và phép chia.
- Rèn luyện kỹ năng vận dụng các tính chất trên vào các bài tập tính nhẩm, tính nhanh và giải toán một cách hợp lý.
- Vận dụng việc tìm số phần tử của một tập hợp đã được học trước vào một số bài toán.
- Hướng dẫn HS cách sử dụng máy tính bỏ túi.
- Giới thiệu HS về ma phương.
NỘI DUNG
I. Ôn tập lý thuyết.
Câu 1: Phép cộng và phép nhân có những tính chất cơ bản nào?
Câu 2: Phép trừ và phép chia có những tính chất cơ bản nào?
II. Bài tập
Dạng 1: Các bài toán tính nhanh
Bài 1: Tính tổng sau đây một cách hợp lý nhất.
a/ 67 + 135 + 33
b/ 277 + 113 + 323 + 87
ĐS: a/ 235 b/ 800
Bài 2: Tính nhanh các phép tính sau:
a/ 8 x 17 x 125
b/ 4 x 37 x 25
ĐS: a/ 17000 b/ 3700
Bài 3: Tính nhanh một cách hợp lí:
a/ 997 + 86
b/ 37. 38 + 62. 37
c/ 43. 11; 67. 101; 423. 1001
d/ 67. 99; 998. 34
Hướng dẫn
a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
Sử dụng tính chất kết hợp của phép cộng.
Nhận xét: 997 + 86 = (997 + 3) + (86 -3) = 1000 + 83 = 1083. Ta có thể thêm vào số hạng này đồng thời bớt đi số hạng kia với cùng một số.
b/ 37. 38 + 62. 37 = 37.(38 + 62) = 37.100 = 3700.
Sử dụng tính chất phân phối của phép nhân đối với phép cộng.
c/ 43. 11 = 43.(10 + 1) = 43.10 + 43. 1 = 430 + 43 = 4373.
67. 101= 6767
423. 1001 = 423 423
d/ 67. 99 = 67.(100 – 1) = 67.100 – 67 = 6700 – 67 = 6633
998. 34 = 34. (100 – 2) = 34.100 – 34.2 = 3400 – 68 = 33 932
Bái 4: Tính nhanh các phép tính:
a/ 37581 – 9999
b/ 7345 – 1998
c/ 485321 – 99999
d/ 7593 – 1997
Hướng dẫn:
a/ 37581 – 9999 = (37581 + 1 ) – (9999 + 1) = 37582 – 10000 = 89999 (cộng cùng một số vào số bị trừ và số trừ
b/ 7345 – 1998 = (7345 + 2) – (1998 + 2) = 7347 – 2000 = 5347
c/ ĐS: 385322
d/ ĐS: 5596
Dạng 2: Các bài toán có liên quan đến dãy số, tập hợp
Bài 1: Tính 1 + 2 + 3 + … + 1998 + 1999
Hướng dẫn
- Áp dụng theo cách tích tổng của Gauss
- Nhận xét: Tổng trên có 1999 số hạng
Do đó
S = 1 + 2 + 3 + … + 1998 + 1999 = (1 + 1999). 1999: 2 = 2000.1999: 2 = 1999000
Bài 2: Tính tổng của:
a/ Tất cả các số tự nhiên có 3 chữ số.
b/ Tất cả các số lẻ có 3 chữ số.
Hướng dẫn:
a/ S1 = 100 + 101 + … + 998 + 999
Tổng trên có (999 – 100) + 1 = 900 số hạng. Do đó
S1= (100+999).900: 2 = 494550
b/ S2 = 101+ 103+ … + 997+ 999
Tổng trên có (999 – 101): 2 + 1 = 450 số hạng. Do đó
S2 = (101 + 999). 450 : 2 = 247500
Bài 3: Tính tổng
a/ Tất cả các số: 2, 5, 8, 11, …, 296
b/ Tất cả các số: 7, 11, 15, 19, …, 283
ĐS: a/ 14751
b/ 10150
Các giải tương tự như trên. Cần xác định số các số hạng trong dãy sô trên, đó là những dãy số cách đều.
Bài 4: Cho dãy số:
a/ 1, 4, 7, 10, 13, 19.
b/ 5, 8, 11, 14, 17, 20, 23, 26, 29.
c/ 1, 5, 9, 13, 17, 21, …
Hãy tìm công thức biểu diễn các dãy số trên.
ĐS:
a/ ak = 3k + 1 với k = 0, 1, 2, …, 6
b/ bk = 3k + 2 với k = 0, 1, 2, …, 9
c/ ck = 4k + 1 với k = 0, 1, 2, … hoặc ck = 4k + 1 với k N
Ghi chú: Các số tự nhiên lẻ là những số không chia hết cho 2, công thức biểu diễn là , k N
Các số tự nhiên chẵn là những số chia hết cho 2, công thức biểu diễn là , k N
Dạng 3: Ma phương
9
19
5
7
11
15
17
3
10
Cho bảng số sau:
Các số đặt trong hình vuông có tính chất rất đặc biệt. đó là tổng các số theo hàng, cột hay đường chéo đều bằng nhau. Một bảng ba dòng ba cột có tính chất như vậy gọi là ma phương cấp 3 (hình vuông kỳ diệu)
15
10
12
Bài 1: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo cột bằng 42.
15
10
17
16
14
12
11
18
13
Hướng dẫn:
4
9
2
3
5
7
8
1
6
1
4
2
7
5
3
8
6
9
Bài 2: Điền các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng có 3 dòng 3 cột để được một ma phương cấp 3?
Hướng dẫn: Ta vẽ hình 3 x 3 = 9 và đặt thêm 4o ô phụ vào giữa các cạnh hình vuông và ghi lại lần lượt các số vào các ô như hình bên trái. Sau đó chuyển mỗi số ở ô phụ vào hình vuông qua tâm hình vuông như hình bên phải.
8
9
24
36
12
4
6
16
18
Bài 3: Cho bảng sau
10
a
50
100
b
c
d
e
40
Ta có một ma phương cấp 3 đối với phép nhân. Hãy điền tiếp vào các ô trống còn lại để có ma phương?
ĐS: a = 16, b = 20, c = 4, d = 8, e = 25
File đính kèm:
- Tiet 3- tuan 5-Tuchon6.doc