Giáo án lớp 12 môn Toán - Bài thứ 01: Sự đồng biến, nghịch biến của hàm số

. Kiến thức:

+ Biết tính đơn điệu của hàm số

+Biết được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số.

2. Kỹ năng:

Biết xét tính đơn điệu của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó

Biết kết hợp nhiều kiến thức liên quan để giải toán.

3. Tư duy và thái độ: Thận trọng, chính xác.

 

doc128 trang | Chia sẻ: manphan | Ngày: 08/08/2016 | Lượt xem: 196 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Toán - Bài thứ 01: Sự đồng biến, nghịch biến của hàm số, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG I: : ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Ngày soạn : 17 / 8 /2013 Bài 1: Sự đồng biến, nghịch biến của hàm số I-Mục tiêu bài học 1. Kiến thức: + Biết tính đơn điệu của hàm số +Biết được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số. 2. Kỹ năng: Biết xét tính đơn điệu của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó Biết kết hợp nhiều kiến thức liên quan để giải toán. 3. Tư duy và thái độ: Thận trọng, chính xác. II- Chuẩn bị của giáo viên và học sinh + GV: Giáo án, bảng phụ. + HS: Ôn lại kthức về tính đồng biến, nghịch biến đã học ở lớp 10. III- Phương pháp Thông qua các hoạt động tương tác giữa trò – trò, thầy – trò để lĩnh hội kiến thức, kĩ năng theo mục tiêu bài học. IV- Tiến trình bài học Tiết 1 1. Kiểm tra bài cũ Đan xen vào các hoạt động trong giờ học 2. Bài mới: Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số HĐ của GV HĐ của HS Ghi bảng Gv treo bảng phụ có hình vẽ H1 và H2 - SGK trg 4. Phát vấn: CH: Các em hãy chỉ ra các khoảng tăng, giảm của các hàm số, trên các đoạn đã cho? CH:Nhắc lại định nghĩa tính đơn điệu của hàm số? CH:Nhắc lại phương pháp xét tính đơn điệu của hàm số đã học ở lớp dưới? CH:Nêu lên mối liên hệ giữa đồ thị của hàm số và tính đơn điệu của hàm số? + Ôn tập lại kiến thức cũ thông qua việc trả lời các câu hỏi phát vấn của giáo viên. + Ghi nhớ kiến thức. I. Tính đơn điệu của hàm số: 1. Nhắc lại định nghĩa tính đơn điệu của hàm số. (SGK) y + Đồ thị của hàm số đồng biến trên K là một đường đi lên từ trái sang phải. x O + Đồ thị của hàm số nghịch biến trên K là một đường đi xuống từ trái sang phải. O x y Hoạt động 2: Tìm hiểu mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm HĐ của GV HĐ của HS Ghi bảng GV Ra đề bài tập: (Bảng phụ) Cho các hàm số sau: y = 2x - 1 và y = x2 - 2x. CH: Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng. + Phân lớp thành hai nhóm, mỗi nhóm giải một câu. + Gọi hai đại diện lên trình bày lời giải lên bảng + Có nhận xét gì về mối liên hệ giữa tính đơn điệu và dấu của đạo hàm của hai hàm số trên? +Rút ra nhận xét chung và cho HS lĩnh hội ĐL1trang 6. + Giải bài tập theo yêu cầu của giáo viên. + Hai học sinh đại diện lên bảng trình bày lời giải. + Rút ra mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm của hàm số. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí 1: (SGK) Cho hàm số y = f(x) có đạo hàm trên K * Nếu f'(x) > 0 thì hàm số y = f(x) đồng biến trên K. * Nếu f'(x) < 0 thì hàm số y = f(x) nghịch biến trên K. Hoạt động 3: Giải bài tập củng cố định lí HĐ của GV HĐ của HS Ghi bảng + Giáo viên ra bài tập 1. + GV hướng dẫn học sinh lập BBT. + Gọi 1 hs lên trình bày lời giải. + Điều chỉnh lời giải cho hoàn chỉnh. + Các Hs làm bài tập được giao theo hướng dẫn của giáo viên. + Một hs lên bảng trình bày lời giải. + Ghi nhận lời giải hoàn chỉnh. Bài tập 1: Tìm các khoảng đồng biến, nghịch biến của hàm số: y = x3 - 3x + 1. Giải: + TXĐ: D = R. + y' = 3x2 - 3. y' = 0 Û x = 1 hoặc x = -1. + BBT: x - ¥ -1 1 + ¥ y' + 0 - 0 + y + Kết luận: Hoạt động 4: Mở rộng định lí về mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số HĐ của GV HĐ của HS Ghi bảng + GV nêu định lí mở rộng và chú ý cho hs là dấu "=" xảy ra tại một số hữu hạn điểm thuộc K. + Ra ví dụ. + Phát vấn kết quả và giải thích. + Ghi nhận kiến thức. + Giải ví dụ. + Trình bày kết quả và giải thích. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí: (SGK) * Chú ý: (SGK) + Ví dụ: Xét tính đơn điệu của hàm số y = x3. ĐS: Hàm số luôn đồng biến. Hoạt động 5: Tiếp cận quy tắc xét tính đơn điệu của hàm số HĐ của GV HĐ của HS Ghi bảng + Từ các ví dụ trên, hãy rút ra quy tắc xét tính đơn điệu của hàm số? + Nhấn mạnh các điểm cần lưu ý. + Tham khảo SGK để rút ra quy tắc. + Ghi nhận kiến thức II. Quy tắc xét tính đơn điệu của hàm số. 1. Quy tắc: (SGK) + Lưu ý: Việc tìm các khoảng đồng biến, nghịch biến của hàm số còn được gọi là xét chiều biến thiên của hàm số đó. Hoạt động 6: Áp dụng quy tắc để giải một số bài tập liên quan đến tính đơn điệu của hàm số HĐ của GV HĐ của HS Ghi bảng + Ra đề bài tập. + Quan sát và hướng dẫn (nếu cần) học sinh giải bài tập. + Gọi học sinh trình bày lời giải lên bảng. + Hoàn chỉnh lời giải cho học sinh. + Giải bài tập theo hướng dẫn của giáo viên. + Trình bày lời giải lên bảng. + Ghi nhận lời giải hoàn chỉnh. Bài tập 2: Xét tính đơn điệu của hàm số sau: ĐS: Hàm số đồng biến trên các khoảng và Bài tập 3: Chứng minh rằng: tanx > x với mọi x thuộc khoảng HD: Xét tính đơn điệu của hàm số y = tanx - x trên khoảng . từ đó rút ra bđt cần chứng minh. 3. Củng cố : GV nhấn mạnh kiến thức trọng tâm hs cần nắm vững 4. Bài tập về nhà: Các bài tập SGK và SBT. -----------------------------------˜&™------------------------------------ Ngày soạn : 17 /8/2013 Bài 1: Sự đồng biến, nghịch biến của hàm số(tt) I-Mục tiêu bài học 1. Kiến thức: Biết tính đơn điệu của hàm số; Biết được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số. 2. Kỹ năng: Biết xét tính đơn điệu của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó; Biết kết hợp nhiều kiến thức liên quan để giải toán. 3. Tư duy và thái độ: Thận trọng, chính xác. II- Tiến trình bài học Tiết 2: Luyện tập 1. Kiểm tra bài cũ Hoạt động 1: 1. Cho hàm số y = f(x) có đạo hàm trên K, với K là khoảng, nửa khoảng hoặc đoạn.Nhắc lại mối liên hệ giữa sự đồng biến, nghịch biến của hàm số trên K và dấu của đạo hàm trên K ? 2. Nêu qui tắc xét sự đồng biến, nghịch biến của hàm số 3. Xét sự đồng biến, nghịch biến của hàm số: y = Hoạt động 2:Tìm các khoảng đơn điệu của các hàm số: 2 a) y = ; c) y = Hoạt động của học sinh Hoạt động của giáo viên - Trình bày bài giải. - Nhận xét bài giải của bạn. - Gọi học sinh lên bảng trình bày bài giải đã chuẩn bị ở nhà. - Gọi một số học sinh nhận xét bài giải của bạn theo định hướng 4 bước đã biết ở tiết 2. - Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải... Hoạt động 3: (Chữa bài tập 5a SGK) Chứng minh bất đẳng thức sau: tanx > x ( 0 < x < ) Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng + Thiết lập hàm số đặc trưng cho bất đẳng thức cần chứng minh. + Khảo sát về tính đơn điệu của hàm số đã lập ( nên lập bảng). + Từ kết quả thu được đưa ra kết luận về bất đẳng thức cần chứng minh. - Hướng dẫn học sinh thực hiện theo định hướng giải. Xét hàm số g(x) = tanx - x xác định với các giá trị x Î và có: g’(x) = tan2x và g'(x) = 0 chỉ tại điểm x = 0 nên hàm số g đồng biến trên g(x) > g(0) = 0, " x Î 3.Củng cố: + Phương pháp xét sự đồng biến, nghịch biến của hàm số. + Áp dụng sự đồng biến, nghịch biến của hàm số để chứng minh một số BĐT. 4. Bài tập về nhà: +Hoàn thiện các bài tập còn lại ở trang 11 (SGK), SBT -----------------------------------˜&™------------------------------------ Ngày 17/8/2013 tiết 3 §2 CỰC TRỊ CỦA HÀM SỐ I. Mục tiêu: 1. Về kiến thức:Biết các khái niệm cực đại, cực tiểu; biết phân biệt các khấi niệm lớn nhất, nhỏ nhất. Biết các điều kiện đủ để hàm số có cực trị. 2. Về kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số. 3. Về tư duy và thái độ: + Hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. + Cẩn thận, chính xác; Tích cực hoạt động; rèn luyện tư duy trực quan, tương tự. II. Chuẩn bị: 1.Giáo viên: Giáo án, bảng phụ 2.Học sinh:Nắm kiến thức bài cũ, nghiên cứu bài mới, đồ dùng học tập. III. Phương pháp: Kết hợp nhiều phương pháp, trong đó vấn đáp, gợi mở là phương pháp chủ đạo. IV. Tiến trình: 1. Kiểm tra bài cũ: Xét sự đồng biến, nghịch bến của hàm số: 2. Bài mới: Hoạt động 1: Khái niệm cực trị Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Treo bảng phụ (H8 tr 13 SGK) H1 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó hàm số có giá trị lớn nhất trên khoảng ? H2 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó hàm số có giá trị nhỏ nhất trên khoảng ? + Cho HS khác nhận xét sau đó GV chính xác hoá câu trả lời và giới thiệu điểm đó là cực đại (cực tiểu). + Cho học sinh phát biểu nội dung định nghĩa ở SGK, đồng thời GV giới thiệu chú ý 1. và 2. + Trả lời. + Nhận xét. + Phát biểu. + Lắng nghe. I. Khái niệm cực đại, cực tiểu Định nghĩa (SGK) Chú ý (SGK) Hoạt động 2: Điều kiện đủ để hàm số có cực trị Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Từ H8, GV kẻ tiếp tuyến tại các điểm cực trị và dẫn dắt đến chú ý 3. và nhấn mạnh: nếu thì không phải là điểm cực trị. + Yêu cầu HS xem lại đồ thị ở bảng phụ và bảng biến thiên ở phần KTBC (Khi đã được chính xác hoá). H1 Nêu mối liên hệ giữa tồn tại cực trị và dấu của đạo hàm? + Cho HS nhận xét và GV chính xác hoá kiến thức, từ đó dẫn dắt đến nội dung định lí 1 SGK. + Dùng phương pháp vấn đáp cùng với HS giải vd2 như SGK. + Cho HS nghiên cứu vd3 rồi lên bảng trình bày. + Cho HS khác nhận xét và GV chính xác hoá lời giải. + Phát biểu. + Lắng nghe. + Trả lời. + Nhận xét. - Quan sát và ghi nhớ II. Điều kiện đủ để hàm số có cực trị Định lí 1 (SGK) x x0-h x0 x0+h f’(x) + - f(x) fCD x x0-h x0 x0+h f’(x) - + f(x) fCT 4. Củng cố toàn bài: + Nhấn mạnh nội dung cần thiết của bài học + Nêu mục tiêu của tiết. 5. Bài tập về nhà: HS về nhà xem kĩ lại phần đã học, xem trước bài mới và làm các bài tập: 1, 3-6 tr18 SGK. Bảng phụ -----------------------------------˜&™------------------------------------ Ngày 24/8/2013 §2 CỰC TRỊ CỦA HÀM SỐ (tt) I. Mục tiêu: 1. Về kiến thức:Biết các khái niệm cực đại, cực tiểu; biết phân biệt các khấi niệm lớn nhất, nhỏ nhất. Biết các điều kiện đủ để hàm số có cực trị. 2. Về kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số. 3. Về tư duy và thái độ: + Hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. + Cẩn thận, chính xác; Tích cực hoạt động; rèn luyện tư duy trực quan, tương tự. II. Chuẩn bị: 1.Giáo viên: Giáo án, bảng phụ 2.Học sinh:Nắm kiến thức bài cũ, nghiên cứu bài mới, đồ dùng học tập. III. Phương pháp: Kết hợp nhiều phương pháp, trong đó vấn đáp, gợi mở là phương pháp chủ đạo. IV. Tiến trình: Tiết 4 1. Kiểm tra bài cũ: 1/ Hãy nêu định lí 1 2/ Áp dụng định lí 1, tìm các điểm cực trị của hàm số : Gv gọi học sinh lên bảng: 2. Bài mới: *Hoạt động 1: Dẫn dắt khái niệm Hoạt động của GV Hoạt động của HS Ghi bảng +Yêu cầu HS nêu các bước tìm cực trị của hàm số từ định lí 1 +Yêu cầu HS tính thêm y”(-1), y”(1) ở câu 2 trên +Phát vấn: Quan hệ giữa đạo hàm cấp hai với cực trị của hàm số? +GV thuyết trình và nêu ĐL 2, quy tắc II +HS trả lời +Tính: y” = y”(-1) = -2 < 0 y”(1) = 2 >0 III-Quy tắc tìm cực trị: *Quy tắc I: Sgk/trang 16 *Định lí 2: Sgk/trang 16 *Quy tắc II: Sgk/trang 17 *Hoạt động 2: Các ví dụ Hoạt động của GV Hoạt động của HS Ghi bảng +Yêu cầu HS vận dụng quy tắc II để tìm cực trị của hàm số +CH: Khi nào nên dùng quy tắc I, khi nào nên dùng quy tắc II ? +Đối với hàm số không có đạo hàm cấp 1 (và do đó không có đạo hàm cấp 2) thì không thể dùng quy tắc II. Riêng đối với hàm số lượng giác nên sử dụng quy tắc II để tìm các cực trị +Yêu cầu HS hoạt động nhóm. Nhóm nào giải xong trước lên bảng trình bày lời giải +HS giải +HS trả lời +HS thực hiện hoạt động nhóm *Ví dụ 1:Tìm các điểm cực trị của hàm số: f(x) = x4 – 2x2 + 1 Giải: Tập xác định của hàm số: D = R f’(x) = 4x3 – 4x = 4x(x2 – 1) f’(x) = 0 ; x = 0 f”(x) = 12x2 - 4 f”(1) = 8 >0 x = -1 và x = 1 là hai điểm cực tiểu f”(0) = -4 < 0 x = 0 là điểm cực đại Kết luận: f(x) đạt cực tiểu tại x = -1 và x = 1; fCT = f(1) = 0 f(x) đạt cực đại tại x = 0; fCĐ = f(0) = 1 *Ví dụ 2: Tìm các điểm cực trị của hàm số f(x) = x – sin2x Giải:Tập xác định : D = R f’(x) = 1 – 2cos2x f’(x) = 0cos2x = f”(x) = 4sin2x f”() = 2 > 0 f”(- ) = -2 < 0 Kết luận: x = ( k) là các điểm cực tiểu của hàm số x = -( k) là các điểm cực đại của hàm số 3. Củng cố toàn bài Giáo viên tổng kết lại các kiến thức trọng tâm của bài học: a. Điều điều kiện đủ để hàm số đạt cực trị b. Hai quy tắc 1 và 2 đê tìm cực trị của một hàm số. 5. Hư ớng dẫn học bài ở nhà và ra bài tập về nhà: Định lý 2 và các quy tắc I, II tìm cực trị của hàm số BTVN: làm các bài tập còn lại ở trang 18 sgk Đọc bài và tìm hiểu bài mới trước ở nhà -----------------------------------˜&™------------------------------------ Ngày 24/8/2013 Tiết 5: Bài tập cực trị của hàm số I. Mục tiêu: 1. Về kiến thức: Biết các khái niệm cực đại, cực tiểu; biết phân biệt các khấi niệm lớn nhất, nhỏ nhất. Biết các điều kiện đủ để hàm số có cực trị. 2. Về kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số. 3. Về tư duy và thái độ: + Hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. + Cẩn thận, chính xác; Tích cực hoạt động; rèn luyện tư duy trực quan, tương tự. II. Tiến trình: 1.Kiểm tra bài cũ: Nêu các quy tắc để tìm cực trị của hàm số 2. Bài mới Bài 1: SGK Hoạt động của GV Hoạt động của HS Ghi bảng +Dựa vào QTắc I và giải +Gọi 1 nêu TXĐ của hàm số +Gọi 1 HS tính y’ và giải pt: y’ = 0 +Gọi 1 HS lên vẽ BBT,từ đó suy ra các điểm cực trị của hàm số +Chính xác hoá bài giải của học sinh +Cách giải bài 2 tương tự như bài tập 1 +Gọi1HSxung phonglênbảng giải,các HS khác theo dõi cách giải của bạn và cho nhận xét +Hoàn thiện bài làm của học sinh(sửa chữa sai sót(nếu có)) + lắng nghe +TXĐ +Một HS lên bảng thực hiện,các HS khác theo dõi và nhận xétkqcủa bạn +Vẽ BBT +Theo dõi và hiểu +HS lắng nghe và nghi nhận +1 HS lên bảng giải và HS cả lớp chuẩn bị cho nhận xét về bài làm của bạn +theo dõi bài giải 1/ TXĐ: D = \{0} ; Bảng biến thiên x -1 0 1 y’ + 0 - - 0 + y -2 2 Hàm số đạt cực đại tại x= -1 và yCĐ= -2 Hàm số đạt cực tiểu tại x =1 và yCT = 2 2/ LG:TXĐ của hàm số là :D=R có tập xác định là R x y’ - 0 + y Hàm số đạt cực tiểu tại x =và yCT = Hoạt động 2: Bài 2 b. HĐ của giáo viên HĐ của học sinh Ghi bảng *HD:GV cụ thể các bước giải cho học sinh +Nêu TXĐ và tính y’ +Giải pt y’ =0 và tính y’’=? +Gọi HS tính y’’()=? y’’() =? và nhận xét dấu của chúng ,từ đó suy ra các cực trị của hàm số *GV gọi 1 HS xung phong lên bảng giải *Gọi HS nhận xét *Chính xác hoá và cho lời giải Ghi nhận và làm theo sự hướng dẫn của GV +TXĐ và cho kq y’ +Các nghiệm của pt y’ =0 và kq của y’’ y’’() = y’’() = +HS lên bảng thực hiện +Nhận xét bài làm của bạn +nghi nhận Tìm cực trị của các hàm số y = sin2x-x LG: TXĐ D =R y’’= -4sin2x y’’() = -2<0,hàm số đạt cực đại tạix=,vàyCĐ= y’’() =8>0,hàm số đạt cực tiểu tại x=,vàyCT= Hoạt động 3: Bài 4.Chứng minh rằng với mọi giá trị của tham số m,hàm số y =x3-mx2 –2x +1 luôn có 1 cực đại và 1 cực tiểu + Gọi 1 Hs cho biết TXĐ và tính y’ +Gợiýgọi HS xung phong nêu điều kiện cần và đủ để hàm số đã cho có 1 cực đại và 1 cực tiểu,từ đó cần chứng minh >0, R +TXĐ và cho kquả y’ +HS đứng tại chỗ trả lời câu hỏi LG: TXĐ: D =R. y’=3x2 -2mx –2 Ta có: = m2+6 > 0, R nên phương trình y’ =0 có hai nghiệm phân biệt Vậy: Hàm số đã cho luôn có 1 cực đại và 1 cực tiểu Hoạt động 4: Bài 6. Xác định giá trị của tham số m để hàm số đạt cực đại tại x =2 GV hướng dẫn: +Gọi 1HS nêu TXĐ +Gọi 1HS lên bảngtính y’ và y’’,các HS khác tính nháp vào giấy và nhận xét Cho kết quả y’’ +GV:gợi ý và gọi HS xung phong trả lời câu hỏi:Nêu ĐK cần và đủ để hàm số đạt cực đại tại x =2? +Chính xác câu trả lời +Ghi nhận và làm theo sự hướng dẫn +TXĐ +Cho kquả y’ và y’’.Các HS nhận xét +HS suy nghĩ trả lời +Lắng nghe LG: TXĐ: D =R\{-m} ; Hàm số đạt cực đại tại x=2 Vậy:m = -3 thì hàm số đã cho đạt cực đại tại x =2 3. Củng cố: Qua bài học này HS cần khắc sâu -Quy tắc I thường dùng tìm cực trị của các hàm số đa thức,hàm phân thức hữu tỉ. Quy tắc II dùng tìm cực trị của các hàm số lượng giác và giải các bài toán liên đến cực trị 4.Bài tập về nhà : làm các BT còn lại trong SGK, SBT -----------------------------------˜&™------------------------------------ Ngày soạn: 24/8/2013 §3 GIÁ TRỊ LỚN NHẤT GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ Mục tiêu Về kiến thức: Nắm được ĐN, phương pháp tìm gtln, nn của hs trên khoảng, nữa khoảng, đoạn. Về kỷ năng: +Tính được gtln, nn của hs trên khoảng, nữa khoảng, đoạn. +Vận dụng vào việc giải và biện luận pt, bpt chứa tham số. Về tư duy, thái độ: +Rèn luyện tư duy logic, tư duy lý luận. +Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài. Chuẩn bị của giáo viên và học sinh Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có) Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học. III-Phương pháp: Gợi mở, vấn đáp, giải quyết vấn đề. IV: Tiến trình bài học Tiết 6 1. Kiểm tra bài cũ: Cho hs y = x3 – 3x. Tìm cực trị của hs. Tính y(0); y(3) và so sánh với các cực trị vừa tìm được. GV nhận xét, đánh giá. 2. Bài mới Hoạt động 1: Hình thành định nghĩa GTLN, GTNN. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - HĐ thành phần 1: HS quan sát BBT (ở bài tập kiểm tra bài cũ) và trả lời các câu hỏi : + 2 có phải là gtln của hs/[0;3] + Tìm  :y(x0)=18 - HĐ thành phần 2:( tìm gtln, nn của hs trên khoảng ) + Lập BBT, tìm gtln, nn của hs y = -x2 + 2x. * Nêu nhận xét : mối liên hệ giữa gtln của hs với cực trị của hs; gtnn của hs. - HĐ thành phần 3: vận dụng ghi nhớ: + Tìm gtln, nn của hs: y = x4 – 4x3 + Ví dụ 3 sgk tr 22. (GV giải thích những thắc mắc của hs ) - Hs phát biểu tại chổ. - Đưa ra đn gtln của hs trên TXĐ D . - Hs tìm TXĐ của hs. - Lập BBT / R= - Tính . - Nhận xét mối liên hệ giữa gtln với cực trị của hs; gtnn của hs. + Hoạt động nhóm. - Tìm TXĐ của hs. - Lập BBT , kết luận. - Xem ví dụ 3 sgk tr 22. - Định nghĩa : Sgk trang 19. - Ghi nhớ: Nếu trên khoảng K mà hs chỉ đạt 1 cực trị duy nhất thì cực trị đó chính là gtln hoặc gtnn của hs / K. - Bảng phụ 2. - Sgk tr 22. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - HĐ thành phần 1: Lập BBT và tìm gtln, nn của các hs: - Nhận xét mối liên hệ giữa liên tục và sự tồn tại gtln, nn của hs / đoạn. - HĐ thành phần 2: vận dụng định lý. + Ví dụ sgk tr 20. (gv giải thích những thắc mắc của hs ) - Hoạt động nhóm. - Lập BBT, tìm gtln, nn của từng hs. - Nêu mối liên hệ giữa liên tục và sự tồn tại của gtln, nn của hs / đoạn. - Xem ví dụ sgk tr 20. - Bảng phụ 3, 4 - Định lý 1 Sgk tr 20. - Sgk tr 20. 3. Củng cố Giáo viên nhắc lại các kiến thức trọng tâm hs cần nhớ 4. Bài tập về nhà: Bài 1: SGK -----------------------------------˜&™------------------------------------ Ngày soạn: 7/9/2013 §3 GIÁ TRỊ LỚN NHẤT GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ (tt) I. Mục tiêu 1. Về kiến thức: + Nắm được ĐN, phương pháp tìm gtln, nn của hs trên khoảng, nữa khoảng, đoạn. 2. Về kỷ năng: +Tính được gtln, nn của hs trên khoảng, nữa khoảng, đoạn. +Vận dụng vào việc giải và biện luận pt, bpt chứa tham số. 3. Về tư duy, thái độ: +Rèn luyện tư duy logic, tư duy lý luận. +Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài. II. Chuẩn bị của giáo viên và học sinh 1. Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có) 2. Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học. III-Phương pháp: Gợi mở, vấn đáp, giải quyết vấn đề. IV: Tiến trình bài học Tiết 7 1. Kiểm tra bài cũ Nêu mối liên hệ giữa tính liên tục và sự tồn tại đạo hàm của hàm số trên một đoạn 2. Bài mới Hoạt động 1: Tiếp cận quy tắc tìm gtln, nn của hsố trên đoạn. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - HĐ thành phần 1: Tiếp cận quy tắc sgk tr 22. Bài tập: Cho hs có đồ thị như hình vẽ sgk tr 21. Tìm gtln, nn của hs/[-2;1]; [1;3]; [-2;3].( nêu cách tính ) - Nhận xét cách tìm gtln, nn của hs trên các đoạn mà hs đơn điệu như: [-2;0]; [0;1]; [1;3]. - Nhận xét gtln, nn của hsố trên các đoạn mà hs đạt cực trị hoặc f’(x) không xác định như: [-2;1]; [0;3]. - Nêu quy tắc tìm gtln, nn của hsố trên đoạn. - HĐ thành phần 2: áp dụng quy tắc tìm gtln, nn trên đoạn. Bài tập: Tìm GT LN và NN của h/s: - HĐ thành phần 3: tiếp cận chú ý sgk tr 22. + Tìm gtln, nn của hs: + Hoạt động nhóm. - Hs có thể quan sát hình vẽ, vận dụng định lý để kết luận. - Hs có thể lập BBT trên từng khoảng rồi kết luận. - Nêu vài nhận xét về cách tìm gtln, nn của hsố trên các đoạn đã xét. - Nêu quy tắc tìm gtln, nn của hsố trên đoạn. + Hoạt động nhóm. - Tính y’, tìm nghiệm y’. - Chọn nghiệm y’/[-1;1] - Tính các giá trị cần thiết - Hs tìm TXĐ : D = [-2;2] - tính y’, tìm nghiệm y’. - Tính các giá trị cần thiết. + Hoạt động nhóm. - Hs lập BBt. - Nhận xét sự tồn tại của gtln, nn trên các khoảng, trên TXĐ của hs. - Sử dụng hình vẽ sgk tr 21 hoặc Bảng phụ 5. - Nhận xét sgk tr 21. - Quy tắc: Sgk tr 22. - Nhấn mạnh việc chọn các nghiệm xi của y’ thuộc đoạn cần tìm gtln, nn. - Bảng phụ 6. - Bảng phụ 7. - Bảng phụ 8. - Chú ý sgk tr 22. Hoạt động 3: Vận dụng việc tìm min, max để giải quyết các bài toán thực tế HĐ của GV HĐ của HS Ghi bảng Có 1 tấm nhôm hình vuông cạnh a. Cắt ở 4 góc hình vuông 4 hình vuông cạnh x. Rồi gập lại được 1 hình hộp chữ nhật không có nắp.Tìm x để hộp này có thể tích lớn nhất. H: Nêu các kích thước của hình hộp chữ nhật này? Nêu điều kiện của x để tồn tại hình hộp? H: Tính thể tích V của hình hộp theo a; x. H: Tìm x để V đạt max TL: các kích thướt là: a-2x; a-2x; x Đk tồn tại hình hộp là: V= x(a-2x)2 = 4x3 – 4ax2 + a2x Tính V’= 12x2 -8ax + a2 V’=0 Xét sự biến thiên trên Vmax= khi a x Bài toán: Hướng dẫn hs trình bày bảng x V’ V 0 + 0 3. Củng cố: + Nắm được k/n. + Phương pháp tìm min, max trên tập D bằng cách dùng bbt của h/s + Nếu D=[a;b] thì có thể không dùng bảng biến thiên. 4. Hướng dẫn học bài ở nhà: + Thuộc định nghĩa và nắm phương pháp tìm min, max + Làm bài tập từ 1 đến 5 trang 23, 24 sgk. -----------------------------------˜&™------------------------------------ Ngày 7/9/2013 Tiết 8: Luyện tập: Giá trị lớn nhất nhỏ nhất của hàm số I. Mục tiêu 1. Về kiến thức: + Nắm được ĐN, phương pháp tìm gtln, nn của hs trên khoảng, nữa khoảng, đoạn. 2. Về kỷ năng: +Tính được gtln, nn của hs trên khoảng, nữa khoảng, đoạn. +Vận dụng vào việc giải và biện luận pt, bpt chứa tham số. 3. Về tư duy, thái độ: +Rèn luyện tư duy logic, tư duy lý luận. +Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài. II. Chuẩn bị của giáo viên và học sinh 1. Chuẩn bị của giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có) 2. Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học. III-Phương pháp: Gợi mở, vấn đáp, giải quyết vấn đề. IV: Tiến trình bài học 1. Kiểm tra bài cũ Nêu quy tắc tìm gtln, nn của hàm số trên đoạn. Áp dụng tìm gtln, nn của hs: y = x3 – 6x2 + 9x – 4 trên đoạn [0;5]; [-2;-1]; (-2;3). GV Nhận xét, đánh giá. 2. Bài mới Hoạt động 1: Cho học sinh tiếp cận dạng bài tập tìm gtln, nn trên đoạn. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Dựa vào phần kiểm tra bài cũ gv nêu lại quy tắc tìm gtln, nn của hs trên đoạn. Yêu cầu học sinh vận dung giải bài tập: - Cho học sinh làm bài tập: 1b,1c sgk tr 24. - Nhận xét, đánh giá câu 1b, c. - Học sinh thảo luận nhóm . - Đại diện nhóm trình bày lời giải trên bảng. Bảng 1 Bảng 2 Hoạt động 2: Cho học sinh tiếp cận với các dạng toán thực tế ứng dụng bài tập tìm gtln, nn của hàm số. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Cho học sinh làm bài tập 2, 3 tr 24 sgk. - Nhận xét, đánh giá bài làm và các ý kiến đóng góp của các nhóm. - Nêu phương pháp và bài giải . - Hướng dẫn cách khác: sử dụng bất đẳng thức cô si. - Học sinh thảo luận nhóm. - Đại diện nhóm lên bảng trình bày bài giải. - Các nhóm khác nhận xét . Bảng 3 Bảng 4 Sx = x.(8-x). - có: x + (8 – x) = 8 không đổi. Suy ra Sx lớn nhất kvck x = 8-x Kl: x = 4. Hoạt động 3: Cho học sinh tiếp cận với dạng bài tập tìm gtln , nn trên khoảng. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Cho học sinh làm bài tập: 4b, 5b sgk tr 24. - Nhận xét, đánh giá câu 4b, 5b. - Học sinh thảo luận nhóm. - Đại diện nhóm lên bảng trình bày bài giải. Bảng 5 Bảng 6. 3. Củng cố 4. Bài tập về nhà - Làm các bài tập con lại sgk. Xem bài tiệm cận của đồ thị hàm số tr 27. -----------------------------------˜&™------------------------------------ Ngày 7/9/2013 Bài 4: Đường tiệm cận I. Mục tiêu: 1. Về kiến thức: – Biết định nghĩa tiệm cận ngang của đồ thị hàm số. – Biết cách tìm các đường tiệm cận ngang của đồ th

File đính kèm:

  • docGiao an Dai so 12 full.doc