MỤC LỤC
Trang
Bài 1 Khái niệm trường 1
1.1 Các tính chất cơ bản của số thực . . . . . . . . . . . . . . . . . . . 1
1.2 Định nghĩa trường . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Một số tính chất của trường . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Trường số hữu tỷ . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Trường các số nguyên modulo p . . . . . . . . . . . . . . . . . . . 5
Bài 2 Không gian vectơ và không gian con 8
2.1 Định nghĩa không gian vectơ . . . . . . . . . . . . . . . . . . . . . 8
2.2 Ví dụ về không gian vectơ . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Một số tính chất của không gian vectơ . . . . . . . . . . . . . . . . 11
2.4 Không gian vectơ con . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Giao của một số không gian con . . . . . . . . . . . . . . . . . . . 14
2.6 Tổng hai không gian con . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Tổ hợp tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Không gian con sinh bởi một số vectơ . . . . . . . . . . . . . . . . 16
Bài 3 Cơ sở và số chiều của không gian vectơ 20
3.1 Độc lập và phụ thuộc tuyến tính . . . . . . . . . . . . . . . . . . . 20
3.2 Một số tính chất độc lập và phụ thuộc tuyến tính . . . . . . . . . . . 21
3.3 Khái niệm cơ sở của một không gian vectơ . . . . . . . . . . . . . . 24
3.4 Sự tồn tại cơ sở . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Khái niệm số chiều của không gian vectơ hữu hạn sinh . . . . . . . 26
3.6 Cơ sở trong không gian vectơ n chiều . . . . . . . . . . . . . . . . 27
3.7 Tọa độ của một vectơ . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Số chiều của không gian con . . . . . . . . . . . . . . . . . . . . . 30
3.9 Hạng của một hệ vectơ . . . . . . . . . . . . . . . . . . . . . . . . 33
Bài 4 Ánh xạ tuyến tính 38
4.1 Định nghĩa ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . 38
4.2 Ví dụ về ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Một số tính chất của ánh xạ tuyến tính . . . . . . . . . . . . . . . . 40
4.4 Ảnh và nhân của ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . 41
Bài 5 Định thức 45
5.1 Phép thế . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Khái niệm định thức . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Các tính chất cơ bản của định thức . . . . . . . . . . . . . . . . . . 51
5.4 Các tính chất của định thức suy ra từ các tính chất cơ bản . . . . . . 53
5.5 Tính định thức bằng cách đưa về dạng tam giác . . . . . . . . . . . 55
5.6 Khai triển định thức theo một dòng hoặc cột . . . . . . . . . . . . . 57
5.7 Định lý Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Bài 6 Ma trận 65
6.1 Các phép toán ma trận . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Tính chất của các phép toán ma trận . . . . . . . . . . . . . . . . . 66
6.3 Định thức của tích hai ma trận vuông cùng cấp . . . . . . . . . . . 67
6.4 Nghịch đảo của ma trận vuông . . . . . . . . . . . . . . . . . . . . 68
6.5 Một ứng dụng vui: mã hóa . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Hạng của một ma trận . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.7 Ma trận của ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . 76
6.8 Tính chất của ma trận của ánh xạ tuyến tính . . . . . . . . . . . . . 78
Bài 7 Hệ phương trình tuyến tính 84
7.1 Khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Tiêu chuẩn có nghiệm . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Hệ Cramer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Phương pháp Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Biện luận về số nghiệm . . . . . . . . . . . . . . . . . . . . . . . . 90
7.6 Hệ phương trình tuyến tính thuần nhất . . . . . . . . . . . . . . . . 91
7.7 Không gian nghiệm của hệ phương trình tuyến tính thuần nhất . . . 91
7.8 Hệ phương trình tuyến tính thuần nhất liên kết . . . . . . . . . . . . 93
Tài liệu tham khảo 99
Chỉ mục 100
105 trang |
Chia sẻ: thanhthanh29 | Lượt xem: 552 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng Đại số tuyến tính - Đại học Thăng Long, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BÀI GIẢNG
ĐẠI SỐ TUYẾN TÍNH
ĐẠI HỌC THĂNG LONG
Học kỳ I, năm học 2005 - 2006
MỤC LỤC
Trang
Bài 1 Khái niệm trường 1
1.1 Các tính chất cơ bản của số thực . . . . . . . . . . . . . . . . . . . 1
1.2 Định nghĩa trường . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Một số tính chất của trường . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Trường số hữu tỷ . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Trường các số nguyên modulo p . . . . . . . . . . . . . . . . . . . 5
Bài 2 Không gian vectơ và không gian con 8
2.1 Định nghĩa không gian vectơ . . . . . . . . . . . . . . . . . . . . . 8
2.2 Ví dụ về không gian vectơ . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Một số tính chất của không gian vectơ . . . . . . . . . . . . . . . . 11
2.4 Không gian vectơ con . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Giao của một số không gian con . . . . . . . . . . . . . . . . . . . 14
2.6 Tổng hai không gian con . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Tổ hợp tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Không gian con sinh bởi một số vectơ . . . . . . . . . . . . . . . . 16
Bài 3 Cơ sở và số chiều của không gian vectơ 20
3.1 Độc lập và phụ thuộc tuyến tính . . . . . . . . . . . . . . . . . . . 20
3.2 Một số tính chất độc lập và phụ thuộc tuyến tính . . . . . . . . . . . 21
3.3 Khái niệm cơ sở của một không gian vectơ . . . . . . . . . . . . . . 24
3.4 Sự tồn tại cơ sở . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Khái niệm số chiều của không gian vectơ hữu hạn sinh . . . . . . . 26
3.6 Cơ sở trong không gian vectơ n chiều . . . . . . . . . . . . . . . . 27
3.7 Tọa độ của một vectơ . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Số chiều của không gian con . . . . . . . . . . . . . . . . . . . . . 30
i
MỤC LỤC ii
3.9 Hạng của một hệ vectơ . . . . . . . . . . . . . . . . . . . . . . . . 33
Bài 4 Ánh xạ tuyến tính 38
4.1 Định nghĩa ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . 38
4.2 Ví dụ về ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Một số tính chất của ánh xạ tuyến tính . . . . . . . . . . . . . . . . 40
4.4 Ảnh và nhân của ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . 41
Bài 5 Định thức 45
5.1 Phép thế . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Khái niệm định thức . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Các tính chất cơ bản của định thức . . . . . . . . . . . . . . . . . . 51
5.4 Các tính chất của định thức suy ra từ các tính chất cơ bản . . . . . . 53
5.5 Tính định thức bằng cách đưa về dạng tam giác . . . . . . . . . . . 55
5.6 Khai triển định thức theo một dòng hoặc cột . . . . . . . . . . . . . 57
5.7 Định lý Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Bài 6 Ma trận 65
6.1 Các phép toán ma trận . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Tính chất của các phép toán ma trận . . . . . . . . . . . . . . . . . 66
6.3 Định thức của tích hai ma trận vuông cùng cấp . . . . . . . . . . . 67
6.4 Nghịch đảo của ma trận vuông . . . . . . . . . . . . . . . . . . . . 68
6.5 Một ứng dụng vui: mã hóa . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Hạng của một ma trận . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.7 Ma trận của ánh xạ tuyến tính . . . . . . . . . . . . . . . . . . . . . 76
6.8 Tính chất của ma trận của ánh xạ tuyến tính . . . . . . . . . . . . . 78
Bài 7 Hệ phương trình tuyến tính 84
7.1 Khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Tiêu chuẩn có nghiệm . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Hệ Cramer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Phương pháp Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Biện luận về số nghiệm . . . . . . . . . . . . . . . . . . . . . . . . 90
7.6 Hệ phương trình tuyến tính thuần nhất . . . . . . . . . . . . . . . . 91
7.7 Không gian nghiệm của hệ phương trình tuyến tính thuần nhất . . . 91
MỤC LỤC iii
7.8 Hệ phương trình tuyến tính thuần nhất liên kết . . . . . . . . . . . . 93
Tài liệu tham khảo 99
Chỉ mục 100
Bài 1
Khái niệm trường
1.1 Các tính chất cơ bản của số thực
Tập các số thực được ký hiệu là R . Ta đã biết hai phép toán cộng (+) và nhân (.)
thông thường trên R có các tính chất sau:
• Phép cộng có tính chất kết hợp: (a+ b) + c = a+ (b+ c), ∀a, b, c ∈ R ,
• Có số 0 ∈ R sao cho: 0 + a = a+ 0 = a, ∀a ∈ R ,
• Với mỗi số thực a có số thực đối của a là −a sao cho: a + (−a) =
(−a) + a = 0,
• Phép cộng có tính chất giao hoán: a+ b = b+ a, ∀a, b ∈ R ,
• Phép nhân có tính chất kết hợp: (a.b).c = a.(b.c), ∀a, b, c ∈ R ,
• Phép nhân có tính chất giao hoán: a.b = b.a, ∀a, b ∈ R ,
• Có số 1 sao cho với mọi số thực a ta có: a.1 = 1.a = a,
• Với mỗi số thực a ̸= 0 luôn có số thực 1
a
sao cho a.
1
a
= 1,
• Phép nhân phân phối đối với phép cộng: a.(b+c) = a.b+a.c và (b+c).a =
b.a+ c.a với mọi a, b, c ∈ R .
Tập các số thực với hai phép toán có các tính chất nói trên đủ để cho phép ta tiến
hành các tính toán trong thực tế và nhìn chung, một tập hợp nào đó được trang bị hai
phép toán thỏa mãn các tính chất nói trên có thể coi là "đủ mạnh" để chúng ta xem
xét một cách cụ thể.
1.2. Định nghĩa trường 2
1.2 Định nghĩa trường
Định nghĩa 1.2.1
Cho tập hợp K có ít nhất hai phần tử. Trên K có hai phép toán là phép cộng (ký
hiệu là +) và phép nhân (ký hiệu là . hoặc×). K cùng với hai phép toán đó được
gọi là một trường nếu thỏa mãn 9 tính chất sau:
1. Phép cộng có tính chất kết hợp: (a+ b) + c = a+ (b+ c), ∀a, b, c ∈ K .
2. Có phần tử 0 ∈ K sao cho: 0+ a = a+0 = a, ∀a ∈ K . Phần tử 0 được
gọi là phần tử trung lập.
3. Với mỗi phần tử a ∈ K luôn tồn tại một phần tử a′ ∈ K sao cho: a+(a′) =
(a′) + a = 0. Phần tử a′ được gọi là phần tử đối của a và được ký hiệu là
−a.
4. Phép cộng có tính chất giao hoán: a+ b = b+ a, ∀a, b ∈ K .
5. Phép nhân có tính chất kết hợp: (a.b).c = a.(b.c), ∀a, b, c ∈ K .
6. Có phần tử 1 ∈ K sao cho với mọi phần tử a ta có: a.1 = 1.a = a. Phần
tử 1 được gọi là phần tử đơn vị của phép nhân trên K .
7. Với mỗi phần tử a ̸= 0 luôn có phần tử a′ ∈ K sao cho a.a′ = a′.a = 1.
Phần tử a′ được gọi là phần tử nghịch đảo của a và được ký hiệu là a−1.
8. Phép nhân có tính chất giao hoán: a.b = b.a, ∀a, b ∈ K .
9. Phép nhân phân phối đối với phép cộng: a.(b+c) = a.b+a.c và (b+c).a =
b.a+ c.a, ∀a, b, c ∈ K .
Các tính chất trên còn được gọi là các tiên đề của trường.
Ví dụ:
• Tập hợp các số thực R với phép toán cộng và nhân thông thường là
một trường.
Xét các tập hợp số N ,Z ,Q cùng hai phép toán cộng và nhân thông
thường.
• Phần tử 4 ∈ N nhưng không có phần tử a ∈ N sao cho 4 + a = 0
nên tập số tự nhiênN không phải là một trường (tiên đề 3 không được
thoả mãn).
• Số nguyên 2 ̸= 0 nhưng không có một số nguyên x nào thỏa mãn
2.x = 1, do đó tập số nguyên Z không phải là một trường (tiên đề 7
không được thoả mãn).
1.3.Một số tính chất của trường 3
• Tập hợp số hữu tỷ Q với các phép toán cộng và nhân thông thường
là một trường vì nó thỏa mãn cả 9 tiên đề của trường. Số 0 chính là
phần tử trung lập, số 1 chính là phần tử đơn vị của trường Q . Nếu
a ∈ Q thì đối của a là−a, nghịch đảo của a ̸= 0 là 1
a
.
1.3 Một số tính chất của trường
Cho K là một trường, a, b, c ∈ K , khi đó:
Tính chất 1.3.1 (Luật giản ước đối với phép cộng)
Nếu a+ b = a+ c (1) thì b = c.
Chứng minh: DoK là một trường, a ∈ K nên a có đối là−a ∈ K . Cộng về phía
bên trái của đẳng thức (1) với−a, ta được:
(−a) + (a+ b) = (−a) + (a+ c)
⇒ [(−a) + a] + b = [(−a) + a] + c (theo tiên đề 1)
⇒ 0 + b = 0 + c (theo tiên đề 3)
⇒ b = c (theo tiên đề 2).
2
Tính chất 1.3.2 (Quy tắc chuyển vế)
Định nghĩa a− b = a+ (−b). Khi đó nếu a+ b = c (2) thì a = c− b.
Chứng minh: Cộng cả hai vế của (2) với−b, ta được:
(a+ b) + (−b) = c+ (−b)
⇒ a+ [b+ (−b)] = c+ (−b) (theo tiên đề 1)
⇒ a+ 0 = c+ (−b) (theo tiên đề 3)
⇒ a = c+ (−b) (theo tiên đề 2)
⇒ a = c− b (theo định nghĩa).
2
Tính chất 1.3.3
a.0 = 0.a = 0.
Chứng minh: Ta có: a.0 = a.(0+ 0) = a.0+ a.0. Mặt khác: a.0 = a.0+ 0.
Do đó: a.0 + a.0 = a.0 + 0. Giản ước cho a.0 ta được a.0 = 0. Tương tự ta
được: 0.a = 0. 2
1.3.Một số tính chất của trường 4
Tính chất 1.3.4
Nếu a.b = 0 thì a = 0 hoặc b = 0.
Chứng minh: Giả sử a.b = 0 (3) và a ̸= 0. Ta sẽ chứng minh b = 0. Thật vậy,
từ a ̸= 0, nhân hai vế của (3) với a−1, ta được:
a−1.(a.b) = a−1.0
⇒ [a−1.a].b = a−1.0 (theo tiên đề 5)
⇒ 1.b = a−1.0 (theo tiên đề 7)
⇒ b = a−1.0 (theo tiên đề 6)
⇒ b = 0 (theo tính chất 1.3.3).
2
Tính chất 1.3.5
a.(−b) = (−a).b = −(a.b).
Chứng minh: Ta có: a.(−b) + a.b = a.[(−b) + b] = a.0 = 0 và (−a).b +
a.b = [(−a) + a].b = 0.b = 0. Do đó: a.(−b) = (−a).b = −(a.b). 2
Tính chất 1.3.6
a(b− c) = ab− ac.
Chứng minh: Ta có a.(b − c) = a.[b + (−c)] = a.b + a.(−c) = a.b +
[−(ac)] = a.b− a.c. 2
Tính chất 1.3.7
Nếu a.b = a.c và a ̸= 0 thì b = c.
Chứng minh: Từ a ̸= 0, ta nhân hai vế của biểu thức a.b = a.c với a−1, ta được:
⇒ a−1.(a.b) = a−1.(a.c)
⇒ (a−1.a).b = (a−1.a).c (theo tiên đề 5)
⇒ 1.b = 1.c (theo tiên đề 7)
⇒ b = c (theo tiên đề 6).
2
1.4. Trường số hữu tỷ 5
1.4 Trường số hữu tỷ
Định nghĩa 1.4.1
Số thực r được gọi là một số hữu tỷ nếu tồn tại hai số nguyên m,n(n ̸= 0) sao
cho r =
m
n
.
Nhận xét: Một số hữu tỷ có thể biểu diễn dưới dạng một số thập phân hữu hạn hoặc
số thập phân vô hạn tuần hoàn.
Ví dụ:
• 23
8
= 2, 875.
• 40
13
= 3, 0769230769230... (được viết gọn lại thành 3, 076923).
Ngược lại, một số thập phân hữu hạn hoặc vô hạn tuần hoàn có thể viết được dưới
dạng một phân số.
• Trường hợp số thập phân hữu hạn: nếu phần thập phân của số đó có k chữ số
thì nhân và chia số đó với 10k.
Ví dụ:
x = 15, 723 =
15723
1000
.
• Trường hợp số thập phân vô hạn tuần hoàn:
Ví dụ:
a. x = 12, 357. Ta có 1000x = 12357, 357, nên
1000x− x = 999x = 12345. Vậy x = 12345
999
=
4115
333
.
b. y = 7, 26. Ta có 100y = 726, 6 và 10y = 72, 6 nên 90y =
654.
Vậy y =
654
90
=
109
15
.
1.5 Trường các số nguyên modulo p
Cho p là một số nguyên. Đặt Z p = {1, 2, 3, . . . , p − 1}. Trên Z p xác định hai
phép toán cộng (+) và nhân (. hoặc×) như sau:
a+ b = (a+ b) mod p,
a.b = (a.b) mod p.
1.5. Trường các số nguyên modulo p 6
Ví dụ:
Phép cộng và nhân trong Z 7 được cho trong bảng sau:
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
. 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1
Mệnh đề 1.5.1
Z p là một trường khi và chỉ khi p là số nguyên tố.
Việc chứng minh mệnh đề trên coi như bài tập dành cho các bạn sinh viên. Phần tử
trung lập của phép cộng là 0 và phần tử đơn vị của phép nhân là 1. Đối của 0 là 0,
nếu 0 < a < p thì đối của a là−a = p− a. Nếu 0 < a < p thì nghịch đảo của
a là phần tử b (0 < b < p) sao cho a.b ≡ 1 (mod p).
Ví dụ:
• Trong Z 7 ta có: 1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3,
6−1 = 6.
• Trường Z 29 là một trường hữu hạn quan trọng thường được sử dụng
trong việc mã hóa (29 là số nguyên tố nhỏ nhất không nhỏ hơn số chữ
cái trong bảng chữ cái tiếng Anh (26 chữ)).
Ta có:
20 + 13 = (20 + 33) mod 29 = 33 mod 29 = 4.
20.13 = (20.13) mod 29 = 260 mod 29 = 28.
−7 = 22, −12 = 17.
Ta có nghịch đảo của một số phần tử trong Z 29 như sau:
1−1 = 1 vì 1.1 = 1 mod 29 = 1,
2−1 = 15 vì 2.15 = 30 mod 29 = 1.
Tương tự 3−1 = 10, 4−1 = 22, 12−1 = 17.
1.5. Trường các số nguyên modulo p 7
BÀI TẬP I
I.1. Chứng minh Z p là một trường khi và chỉ khi p là một số nguyên tố.
I.2. Lập bảng cộng và nhân trong trường Z 5.
I.3. Tìm phần tử đối và phần tử nghịch đảo của các phần tử khác 0 trong trường Z 29.
I.4. Cho K là một trường, n ∈ N ∗, ta định nghĩa an = a.a. . . . .a| {z }
n lần
. Quy ước
a0 = 1. Chứng minh các đẳng thức sau:
a. (a+ b)n =
nX
k=0
C kna
n−kbk,
b. an − bn = (a− b)(an−1 + an−2.b+ . . .+ a.bn−2 + an−1).
I.5. Chuyển những phân số sau về số thập phân hữu hạn hoặc vô hạn tuần hoàn
a. x =
125
8
,
b. y =
379
110
,
c. z =
462
13
.
I.6. Chuyển những số thập phân sau về phân số:
a. x = 17, 522,
b. y = 12, 536,
c. z = 23, 67.
Bài 2
Không gian vectơ và không gian con
2.1 Định nghĩa không gian vectơ
Định nghĩa 2.1.1
Cho V là một tập hợp mà các phần tử được ký hiệu là: α, β, γ . . . , K là một
trường mà các phần tử được ký hiệu là a, b, c, x, y, z . . .. Trên V ta có hai phép
toán
• Phép cộng hai phần tử của V :
+ : V × V → V
(α, β) 7→ α+ β
• Phép nhân một phần tử của V với một phần tử của K :
. : K × V → V
(x, α) 7→ x.α
Giả sử đối với mọi α, β, γ ∈ V , mọi x, y ∈ K các điều kiện sau được thỏa mãn:
1. (α+ β) + γ = α+ (β + γ),
2. Tồn tại vectơ θ sao cho θ + α = α+ θ = α,
3. Với mỗi α có một phần tử α′ sao cho α+ α′ = α′ + α = θ,
4. α+ β = β + α,
5. x.(α+ β) = x.α+ x.β,
6. (x+ y).α = x.α+ y.α,
7. (xy).α = x.(y.α),
8. 1.α = α, trong đó 1 là phần tử đơn vị của trường K .
2.2. Ví dụ về không gian vectơ 9
Khi đó ta nói rằng V là một không gian vectơ trên trườngK (hoặc V làK− không
gian vectơ). Ta cũng nói V là không gian tuyến tính trên trường K .
Chú ý:
• Các phần tử củaV được gọi là các vectơ. Phần tử θ được gọi là vectơ không,α′
được gọi là phần tử đối của α và được ký hiệu là (−α). Ta sẽ viết α+ (−β)
là α− β và gọi là hiệu của hai vectơ α, β.
• Khi K = R (tương ứng K = C ) ta nói V là không gian vectơ thực (tương
ứng không gian vectơ phức).
• Khi ta nói V là một không gian vectơ, ta ngầm hiểu rằng ta đang nói đến V
cùng với hai phép toán là phép cộng hai phần tử của V và phép nhân một phần
tử của V với một phần tử của K .
• Để đơn giản trong cách viết, từ đây trở đi ta sẽ ký hiệu phép nhân một phần tử
x thuộc trường K với một vectơ α thuộc V là xα thay vì viết x.α.
2.2 Ví dụ về không gian vectơ
1. Trong không gian cho trước một điểm O cố định. Tập tất cả các vectơ hình
học trong không gian, có gốc tạiO cùng với phép cộng các vectơ và phép nhân
một số thực với một vectơ là một không gian vectơ thực. Không gian vectơ này
được gọi là không gian vectơ hình học và được ký hiệu là E3.
2. Xét trường số thực R và trường số hữu tỷ Q . Đối với R , tổng của hai số thực
là một số thực và nếu x ∈ Q , α ∈ R thì xα ∈ R . Tám điều kiện trong
định nghĩa một không gian vectơ chính là các tính chất quen thuộc của số thực.
Vì vậy R là một không gian vectơ trên Q . Tuy nhiên Q không là không gian
vectơ trên R vì x ∈ R , α ∈ Q thì nói chung xα /∈ Q .
3. Cho R là trường số thực. Ký hiệu R n là tích Descartes của n bản R
R n = {(a1, a2, . . . , an) | ai ∈ R , i = 1, n}.
Với α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) là hai phần tử tùy ý thuộc
R n và x là một phần tử tùy ý thuộc R , ta định nghĩa:
α+ β = (a1, a2, . . . , an) + (b1, b2, . . . , bn)
= (a1 + b1, a2 + b2, . . . , an + bn),
xα = x(a1, a2, . . . , an) = (xa1, xa2, . . . , xan).
2.2. Ví dụ về không gian vectơ 10
Khi đó R n cùng với phép toán cộng và nhân như trên là một không gian vectơ
thực.
4. Xét C[a, b] là tập hợp tất cả các hàm số thực liên tục trên [a, b]. Tổng của hai
hàm số f, g ∈ C[a, b] là hàm số f + g ∈ C[a, b] được định nghĩa bởi
(f + g)(x) = f(x) + g(x)
và tích của của một số thực r ∈ R với hàm số f ∈ C[a, b] là hàm số
rf ∈ C[a, b] được định nghĩa bởi
(rf)(x) = rf(x).
Khi đó C[a, b] là một không gian vectơ trên R đối với phép cộng và phép nhân
được định nghĩa trên.
5. K làmột trường. Vớimỗi bộ hữuhạn các phần tử thuộcK : an, an−1, . . . , a1, a0,
ta lập biểu thức hình thức:
p(x) = anx
n + an−1xn−1 + . . .+ a2x2 + a1x+ a0.
p(x) được gọi là một đa thức của ẩn x (hay biến x) với hệ số trên trường K .
Với n = 0 mọi phần tử bất kỳ của trường K đều là đa thức.
Đa thức có tất cả các hệ số bằng không được gọi là đa thức không, ký hiệu là θ.
Nếu an ̸= 0 thì số n gọi là bậc của đa thức p(x), ký hiệu n = deg p(x). Ta
quy ước deg θ = −∞ (hoặc có thể xem như θ không có bậc).
Ta ký hiệu K [x] là tập hợp tất cả các đa thức ẩn x với hệ số trên K . Ta định
nghĩa hai phép toán cộng và nhân vô hướng trên K [x] như sau: Với mỗi cặp
đa thức p(x), q(x),
p(x) = anx
n + . . .+ a1x+ a0,
q(x) = bmx
m + . . .+ bn+1x
n+1 + bnx
n + . . .+ b1x+ b0.
• Giả sửm > n. Khi đó:
p(x)+q(x) = bmx
m+. . .+bn+1x
n+1+(an+bn)x
n+. . .+(a0+b0).
Giả sửm = n. Khi đó:
p(x) + q(x) = (an + bn)x
n + . . .+ (a1 + b1)x+ (a0 + b0).
• ap(x) = (aan)xn + (aan−1)xn−1 + . . .+ (aa1)x+ (aa0).
2.3.Một số tính chất của không gian vectơ 11
Với hai phép toán định nghĩa như trên, K [x] là một không gian vectơ trên K .
Trường hợp đặc biệt, khi K = R , ta có R [x] là một không gian vectơ thực.
Trong suốt quyển sách này nếu không lưu ý gì thêm thì ta ngầm hiểu rằng
C[a, b],K [x],R [x],R n là các không gian vectơ được định nghĩa trong các ví
dụ trên.
2.3 Một số tính chất của không gian vectơ
Mệnh đề 2.3.1
Giả sử V là một không gian vectơ trên trường K , khi đó
1. Vectơ không θ là duy nhất.
2. Với mỗi α ∈ V , vectơ đối của α là duy nhất.
3. 0α = θ, ∀α ∈ V .
4. xθ = θ, ∀x ∈ K .
5. xα = θ khi và chỉ khi x = 0 hoặc α = θ.
6. x(−α) = −(xα) = (−x)α, ∀x ∈ K , α ∈ V .
7. x(α− β) = xα− xβ, ∀x ∈ K , α, β ∈ V .
8. (x− y)α = xα− yα, ∀x, y ∈ K , α ∈ V .
9. Nếu α+ γ = β + γ thì α = β, ∀α, β, γ ∈ V (Luật giản ước).
10. Nếu α+ β = γ thì α = γ − β, ∀α, β, γ ∈ V (Quy tắc chuyển vế).
Chứng minh:
1. Giả sử tồn tại θ1 ∈ V cũng thỏa mãn điều kiện: θ1 + α = α+ θ1 = α với
mọi α ∈ V . Ta có
θ = θ + θ1 = θ1.
Vậy vectơ không θ là duy nhất.
2. Giả sử tồn tại α1 ∈ V sao cho α+ α1 = α1 + α = θ. Ta có
α1 = α1 + θ = α1 + [α+ (−α)]
= (α1 + α) + (−α)
= θ + (−α) = −α.
Suy ra vectơ đối của α là duy nhất.
2.3.Một số tính chất của không gian vectơ 12
3. 0α = (0 + 0)α = 0α+ 0α.
Cộng−0α vào cả hai vế của đẳng thức trên ta được
0α+ (−0α) = (0α+ 0α) + (−0α).
Hay tương đương
θ = 0α+ (0α+ (−0α))
= 0α+ θ = 0α.
4. xθ = x(θ + θ) = xθ + xθ. Cộng−xθ vào cả hai vế của đẳng thức trên ta
được
xθ + (−xθ) = (xθ + xθ) + (−xθ).
Đẳng thức này tương đương với
θ = xθ + [xθ + (−xθ)]
= xθ + θ = xθ.
5. Theo tính chất 3. và 4. ta có: nếu x = 0 hoặc α = θ thì xα = θ.
Ngược lại, giả sử xα = θ. Nếu x ̸= 0 thì
α = 1α = (
1
x
x)α
=
1
x
(xα) =
1
x
θ
= θ.
Vậy xα = θ kéo theo x = 0 hoặc α = θ.
6. Để chứng minh tính chất này, chúng ta nhận thấy rằng
θ = 0α = [x+ (−x)]α
= xα+ (−x)α.
Cộng −(xα) vào biểu thức đầu tiên và cuối cùng của đẳng thức trên. Ta suy
ra: −(xα) = (−x)α. Mặt khác,
θ = xθ = x[α+ (−α)]
= xα+ x(−α).
Cộng−(xα) vào cả hai vế của đẳng thức trên ta được
−(xα) = x(−α).
Từ các lập luận trên, tính chất được chứng minh.
2.4. Không gian vectơ con 13
7. Ta có
x(α− β) = x[α+ (−β)] = xα+ x(−β)
= xα+ (−xβ)(theo tính chất 6.)
= xα− xβ.
8. Ta có
(x− y)α = [x+ (−y)]α = xα+ (−y)α
= xα+ (−yα) (theo tính chất 6.)
= xα− yα.
Còn luật giản ước và quy tắc chuyển vế được chứng minh tương tự phần trường
sẽ dành cho các bạn như bài tập.
2
2.4 Không gian vectơ con
Định nghĩa 2.4.1
Giả sử V là một không gian vectơ trên trường K . Tập con W khác rỗng của V
được gọi là không gian vectơ con (hay không gian con) của không gian vectơ V nếu
các điều kiện sau được thỏa mãn
1. ∀α, β ∈W : α+ β ∈W .
2. ∀α ∈W : xα ∈W (∀x ∈ K ).
Ta có một số nhận xét sau
1. VìW ̸= ∅ nên ∃α ∈W . Theo điều kiện 2. ta có: 0α = θ ∈W . Vậy mọi
không gian con đều chứa θ.
2. Giả sử W là không gian con của V . Dễ thấy tám điều kiện trong định nghĩa
một không gian vectơ được thỏa mãn, do đóW là một K− không gian vectơ
. Ngược lại, nếuW là một tập con của V vàW là một K− không gian vectơ
đối với hai phép toán xác định trên V thìW là một không gian con của V .
Mệnh đề 2.4.2
TậpW khác rỗng của V là không gian con của K− không gian vectơ V khi và chỉ
khi với mọi α, β ∈W , mọi x, y ∈ K ta có: xα+ yβ ∈W .
Chứng minh:
(⇒) Giả sử W là không gian con của V . Theo điều kiện 2. ta có xα ∈ W ,
yβ ∈W . Lại theo điều kiện 1. ta được xα+ yβ ∈W .
2.5. Giao của một số không gian con 14
(⇐) Giả sử xα + yβ ∈ W với mọi α, β ∈ W, x, y ∈ K . Lấy x = 1, y = 1
ta có
xα+ yβ = 1α+ 1β = α+ β ∈W.
Lấy y = 0 ta có: xα+ yβ = xα+ 0β = xα+ θ = xα ∈W .
Như vậyW thỏa mãn hai điều kiện trong định nghĩa một không gian con do đóW
là một không gian con của V . 2
Ví dụ:
1. Không gian vectơ V bất kỳ đều có hai không gian con là bản thân tập
V và tập {θ} gồm chỉ một vectơ không. Các không gian con này
được gọi là các không gian con tầm thường.
2. Trong không gian vectơ hình học E3, tập W gồm các vectơ gốc tại
gốc tọa độ O và nằm trên cùng một mặt phẳng (P) cho trước đi qua O
là một không gian con của E3.
3. W = {(x1, x2, 0) | x1, x2 ∈ R } là một không gian con của không
gian vectơ R 3.
4. Với n ≥ 0, đặt
Pn[x] = {p(x) ∈ R [x] | deg p(x) ≤ n}.
Khi đó Pn[x] là một không gian con của R [x].
2.5 Giao của một số không gian con
Mệnh đề 2.5.1
Giả sử W1,W2, . . . ,Wm là những không gian con của một không gian vectơ V
trên trường K . Khi đóW =
m\
i=1
Wi là một không gian con của V .
Chứng minh: Vì θ ∈ Wi, i = 1,m nên θ ∈ W , do đóW ̸= ∅. Giả sử α, β
là hai vectơ tùy ý thuộcW , màW =
m\
i=1
Wi suy ra α, β ∈ Wi, i = 1,m. Hơn
nữaWi là những không gian con của V nên theo mệnh đề 2.5.1 với mọi x, y ∈ K
ta có xα+ yβ ∈Wi, i = 1,m. Từ đây suy ra xα+ yβ ∈W và như vậy theo
mệnh đề 2.5.1 ta cóW là một không gian con của V . 2
2.6. Tổng hai không gian con 15
2.6 Tổng hai không gian con
Mệnh đề 2.6.1
Giả sửW1,W2 là hai không gian con của không gian vectơ V trên trường K . Ta
định nghĩa
W = {α1 + α2 | α1 ∈W1, α2 ∈W2}.
Khi đóW là một không gian con của V và được gọi là tổng của hai không gian con
W1,W2 .
Chứng minh: Vì θ = θ + θ nên θ ∈W , do đóW ̸= ∅.
Giả sử α, β là hai vectơ tùy ý thuộcW . Khi đó
α = α1 + α2, β = β1 + β2, với α1, β1 ∈W1; α2, β2 ∈W2.
Với mọi x, y ∈ K ta có
xα+ yβ = x(α1 + α2) + y(β1 + β2) = (xα1 + yβ1) + (xα2 + yβ2).
Đặt γ1 = xα1+yβ1, γ2 = xα2+yβ2, theo mệnh đề 2.5.1 ta có γ1 ∈W1, γ2 ∈
W2. Vậy theo định nghĩa củaW thì xα + yβ = γ1 + γ2 ∈ W . Lại theo mệnh
đề 2.5.1 ta cóW là một không gian con của V . 2
2.7 Tổ hợp tuyến tính
Định nghĩa 2.7.1
Cho V là một không gian vectơ trên trường K .
1. Giả sử α1, α2, . . . , αm là m vectơ thuộc V (m ≥ 1). Nếu α = x1α1 +
x2α2 + · · · + xmαm, xi ∈ K , i = 1,m thì ta nói α là tổ hợp tuyến tính
củam vectơ đã cho hay α biểu diễn tuyến tính qua hệm vectơ đã cho.
2. Giả sử S là tập con của V (số phần tử của S có thể hữu hạn hoặc vô hạn). Ta
nóiα biểu diễn tuyến tính qua tập S nếuα biểu diễn tuyến tính qua một hệ hữu
hạn vectơ thuộc S.
Dễ thấy nếu α biểu diễn tuyến tính qua tập S và mỗi vectơ thuộc S lại biểu diễn
tuyến tính qua tập T (S,T là hai tập con của K− không gian vectơ V ) thì α biểu
diễn tuyến tính qua tập T .
Ví dụ:
1. Nếu α ∈ S thì α biểu diễn tuyến tính qua S, θ biểu diễn tuyến tính qua tập
con bất kỳ của V .
2.8. Không gian con sinh bởi một số vectơ 16
2. Trong không gian vectơ V = R 2 xét các véc tơ
α = (2, 3), α1 = (0, 1), α2 = (1, 1)
Tính toán ta thấy α = α1 + 2α2. Vậy α là tổ hợp tuyến tính của hai vectơ
α1, α2.
3. Trong không gian vectơ R [x] xét ba đa thức với hệ số thực:
β1 = x+ 3, β2 = 2x
2 + 2x+ 1, β = x2 + 4x+ 9, 5.
Trong trường hợp này β = 3β1 +
1
2
β2. Suy ra β là tổ hợp tuyến tính của hai
vectơ β1, β2.
2.8 Không gian con sinh bởi một số vectơ
Mệnh đề 2.8.1
Cho hệ gồmm vectơ α1, α2, . . . , αm của không gian vectơ V trên trường K . Ta
định nghĩa
W = {x1α1 + x2α2 + · · ·+ xmαm | xi ∈ K , i = 1,m}.
Khi đó
1. W là một không gian con của V .
2. W chứa αi, i = 1,m.
3. W là không gian con nhỏ nhất của V chứa αi, i = 1,m.
Chứng minh: Ta chứng minh khẳng định đầu còn hai khẳng định sau được coi như
bài tập.
Vì θ = 0α1 + 0α2 + · · · + 0αm ∈ W nên W ̸= ∅. Mặt khác lấy hai vectơ
α, β tùy ý thuộcW , khi đó
α = a1α1 + a2α2 + · · ·+ amαm,
β = b1α1 + b2α2 + · · ·+ bmαm
và x, y ∈ K tùy ý. Ta có ‘
xα+ yβ = x(a1α1 + a2α2 + · · ·+ amαm) + y(b1α1 + b2α2 + · · ·+ bmαm)
= (xa1 + yb1)α1 + (xa2 + yb2)α2 + · · ·+ (xam + ybm)αm ∈W.
VậyW là một không gian con của V . 2
2.8. Không gian con sinh bởi một số vectơ 17
Định nghĩa 2.8.2
W xác định như trong mệnh đề 2.8.1 được gọi là không gian con sinh bởi hệm vectơ
α1, α2, . . . , αm và được ký hiệu là: L(α1, α2, . . . , αm). Hệ {α1, α2, . . . , αm}
được gọi là hệ sinh củaW .
BÀI TẬP II
Bài tập về không gian vectơ
II.1. Chứng minh rằng các tập C[a, b], R [a, b] cùng với các phép toán được định
nghĩa trong mục 2.2 là không gian vectơ thực.
II.2. Trong các tập sau đây tập nào là không gian vectơ
1. Tập các số phức C với phép toán cộng hai số phức và phép nhân một số phức
với một số thực thông thường.
2. Tập các số nguyên Z với phép cộng hai số nguyên và phép nhân một số nguyên
với một số thực thông thường.
3. Tập các các đa thức hệ số hữu tỷ với phép cộng hai đa thức và phép nhân một
đa thức với một số hữu tỷ.
II.3. Chứng minh rằng các tập sau đây không là không gian vectơ trên trường số
thực
File đính kèm:
- Bai giang dai so tuyen tinh.pdf