. Kiến thức: giúp HS
• Hiểu được định nghĩa của phép đồng dạng, biết rằng phép dời hình và phép vị tự là những trường hợp riêng của phép đồng dạng.
• Hiểu được khái niệm hợp thành của hai phép biến hình nào đó và do đó hiểu được ý nghĩa của định lí: Mọi phép đồng dạng đều là hợp thành của một phép vị tự và một phép dời hình.
2. Kỹ năng:
• Nắm tính chất của phép đồng dạng và hình dung phép đồng dạng biến một hình H thành hình như thế nào.
4 trang |
Chia sẻ: lephuong6688 | Lượt xem: 940 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài giảng môn học Hình học lớp 11 - Bài 7: Phép đồng dạng - Tiết 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
§7. PHÉP ĐỒNG DẠNG
Tiết 11
I. MỤC TIÊU
1. Kiến thức: giúp HS
Hiểu được định nghĩa của phép đồng dạng, biết rằng phép dời hình và phép vị tự là những trường hợp riêng của phép đồng dạng.
Hiểu được khái niệm hợp thành của hai phép biến hình nào đó và do đó hiểu được ý nghĩa của định lí: Mọi phép đồng dạng đều là hợp thành của một phép vị tự và một phép dời hình.
2. Kỹ năng:
Nắm tính chất của phép đồng dạng và hình dung phép đồng dạng biến một hình H thành hình như thế nào.
Nhận biết về sự đồng dạng của các hình ta thường gặp trong thực tế.
3. Tư duy và thái độ:
Tư duy logic, nhạy bén.
Tính thực tế.
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
1. Chuẩn bị của học sinh: bài cũ, xem trước bài mới, dụng cụ học tập.
2. Chuẩn bị của giáo viên: bài giảng, hình vẽ, bảng phụ, phiếu học tập.
III. TIẾN TRÌNH BÀI HỌC
1. Ổn định tổ chức (1‘): kiểm tra vệ sinh, tác phong, sĩ số.
2. Kiểm tra bài cũ (5‘): nêu định nghĩa, các tính chất của phép vị tự, tam giác ABC có diện tích S, thực hiện phép vị tự tỉ số 2 biến thành tam giác A’B’C’ có diện tích bao nhiêu?
3. Bài mới:
tg
Hoạt động của GV
Hoạt động của HS
Ghi bảng
10’
Hoạt động 1: định nghĩa phép đồng dạng
1 Định nghĩa phép đồng dạng
Giới thiệu và cho Hs tiếp cận định nghĩa phép đồng dạng, yêu cầu Hs phát biểu định nghĩa.
Chốt định nghĩa, khắc sâu các yếu tố của phép đồng dạng: tỉ số, cách cho ảnh.
Cho Hs trả lời câu hỏi H1: phép dời hình và phép vị tự có phải là những phép đồng dạng hay không? Nếu có thì tỉ số đồng dạng là bao nhiêu? (GV gợi ý bằng các câu hỏi nhỏ: tính chất cơ bản của phép dời hình là gì? nếu có hai điểm M, N thì ảnh của nó là M’, N’ có tính chất gì? Tính chất của phép vị tự? (quan tâm đến tính chất M’N’=MN) từ đó trả lời câu hỏi.
Chốt lại kiến thức vừa nhận xét.
Cho Hs hoạt động nhóm với nội dung như SGK:
F gọi là phép hợp thành của hai phép biến hình V và D. Hãy chứng tỏ F là một phép đồng dạng tỉ số ? (phiếu )
Giới thiệu cho Hs khái niệm hợp thành của hai phép biến hình, yêu cầu Hs hoạt động trả lời câu hỏi.
Chốt kết quả, nêu đáp án, nhận xét hoạt động; khẳng định nếu thực hiện liên tiếp một phép vị tự và một phép dời hình thì kết quả là một phép đồng dạng, điều ngược lại cũng đúng. Chuyển tiếp mục 2.
Tiếp cận định nghĩa phép đồng dạng và phát biểu.
Trả lời các câu hỏi: phép dời hình không là thay đổi khoảng cách giữa hai điểm bất kì (M’N’ = MN), vậy nó là phép đồng dạng tỉ số k = 1; phép vị tự tỉ số k thì M’N’=MN nên nó là phép đồng dạng với tỉ số .
Nắm khái niệm hợp thành của hai phép biến hình nào đó, theo dõi sơ đồ và hoạt động nhóm chứng minh.
Các nhóm hoạt động, nêu kết quả, nhận xét, bổ sung: phép vị tự V biến M, N thành M1, N1 nên M1N1 = MN; phép dời hình D biến M1, N1 thành M’, N’ thì M’N’=M1N1 vậy M’N’=M1N1=MN nên F là phép đồng dạng tỉ số .
Phép biến hình F gọi là phép đồng dạng tỉ số k (k > 0) nếu với hai điểm bất kì M, N và ảnh M’, N’ của nó, ta có M’N’ = kMN.
7’
Hoạt động 2: tính chất của phép đồng dạng
2. Định lí
Giới thiệu và cho Hs tiếp cận nội dung định lí. Yêu cầu Hs nhắc lại nội dung định lí.
Chốt và khắc sâu nội dung định lí, cho Hs thấy rằng phép đồng dạng tỉ số k có được khi thực hiện liên tiếp phép vị tự tỉ số k và phép dời hình, yêu cầu Hs nhận xét: ba điểm thẳng hàng qua phép vị tự cho kết quả như thế nào? tiếp tục qua phép dời hình cho kết quả gì? Tương tự như thế cho Hs nhận xét với các trường hợp là đường thẳng, đoạn thẳng, tia, tam giác, đường tròn, góc.
Từ đó cho Hs phát biểu toàn bộ nội dung hệ quả của định lí.
Đưa bảng phụ tóm tắt nội dung hệ quả.
Cho Hs trả lời câu hỏi ?2: có phải mọi phép đồng dạng đều biến đường thẳng thành đường thẳng song song hoặc trùng với nó hay không? (Hd: phép vị tự có tính chất đó không? Xét phép dòi hình là phép quay thì thế nào?)aoy thic hoa)
ĐVĐ: thế nào là hai hình đồng dạng?
Tiếp cận định lí và phát biểu nội dung.
Trả lời câu hỏi của GV
Phát biểu hệ quả.
Trả lời câu hỏi ?2: không có tính chất đó. (phép vị tự có tính chất đó nhưng xét phép dời hình là phép quay với góc quay khác sẽ không có tính chất đó)
Mọi phép đồng dạng F tỉ số k đều là hợp thành của một phép vị tự tỉ số k và một phép dời hình D.
Hệ quả. (tính chất của phép đồng dạng) (SGK tr 30)
10’
Hoạt động 3: hai hình đồng dạng
3. Hai hình đồng dạng
Cho Hs quan sát hình 26 (bảng phụ), giới thiệu: phép vị tự V biến H thành H1, có phép dòi hình biến H1 thành H’ (do hai hình bằng nhau) gọi F là hợp thành của V và D, ta nói rằng H và H’ là hai hình đồng dạng. Vậy thế nào là hai hình đồng dạng với nhau?
Chú ý cho Hs: khái niệm hai tam giác đồng dạng đã biết ở cấp 2 phù hợp với định nghĩa trên.
Chốt kiến thức: định nghĩa à muốn chứng tỏ hai hình đồng dạng với nhau cần làm gì? (tìm ra phép đồng dạng biến hình này thành hình kia)
Chứng minh rằng hai đường tròn bất kì là hai đường tròn đồng dạng?
Xem hình 26 SGK, theo dõi Hd của Gv, nêu định nghĩa hai hình đồng dạng.
Tìm ra phép đồng dạng biến hình này thành hình kia
Trả lời câu hỏi.
(O;R) à (O’;R’)
và , vậy (O;R), (O’;R’) đồng dạng.
Định nghĩa
Hai hình gọi là đồng dạng với nhau nếu có phép đồng dạng biến hình này thành hình kia.
Chú ý Khái niệm hai tam giác đồng dạng đã biết ở cấp 2 phù hợp với định nghĩa trên.
10’
Hoạt động 4: củng cố
Cho bài tập củng cố trên bảng phụ, yêu cầu Hs suy nghĩ tìm cách giải quyết.
Đưa bảng phụ vẽ hình và Hd Hs cách tìm phép biến hình:
và , kết luận gì về C và M? Suy ra tập hợp các điểm C là gì?
Theo dõi đề bài trên bảng phụ, suy nghĩ tìm cách giải.
Theo dõi hình vẽ, Hd của Gv và trả lời.
Bài tập
Cho hai điểm A, B cố định trên đường tròn (O, R) cho trước. Một điểm M di động trên đường tròn đó. gọi N là trung điểm đoạn thẳng AM. Dựng hình bình hành ABCN. Xác định phép biến hình biến M thành C và chứng tỏ rằng tập hợp các điểm C là một đường tròn có bán kính xác định.
KQ:
và nên phép biến hình biến M thành C là một phép đồng dạng.
N chạy trên đường tròn bán kính nên C chạy trên đường tròn bán kính .
4. Củng cố và dặn dò (1‘): định nghĩa, các tính chất của phép đồng dạng.
5. Bài tập về nhà: 31, 32, 33 SGK
File đính kèm:
- Tiet 11.doc