Bài giảng Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung tiết 9

 MỤC TIÊU:

Học sinh nắm được thế nào là phân tích đa thức thành nhân tử

HS biết cách phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Biết vận dụng thành thạo vào làm bài tập

CHUẨN BỊ :

Phiếu học tập, máy chiếu hoặc bảng phụ.

NỘI DUNG :

 

doc14 trang | Chia sẻ: shironeko | Lượt xem: 2879 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Bài giảng Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung tiết 9, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tuần 5 Giáo viên : Tạ Văn Thuận Ngày soạn : 04/10/2004 Ngày dạy : 04/10/2004 Tiết 9 : PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG MỤC TIÊU: Học sinh nắm được thế nào là phân tích đa thức thành nhân tử HS biết cách phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung Biết vận dụng thành thạo vào làm bài tập CHUẨN BỊ : Phiếu học tập, máy chiếu hoặc bảng phụ. NỘI DUNG : GÁO VIÊN HỌC SINH NỘI DUNG Hoạt Động 1: (Kiêm tra,nêu vấn đề) (10 phút) Viết 7 hằng đẳng thức đáng nhớ Làm bài tập 36 Tr17 - SGK Nhận xét bài toán và kết quả ? Hoạt Động 2: (Ví dụ) (15 phút) Ví dụ 1 - Viết mỗi hạng tử thành tích mà có nhân tử chung . - Nhân tử chung là gì? Viết 2x2 – 4x thành tích 2x(2x-2) được gọi là phân tích đa thức thành nhân tử. Vậy phân tích đa thức thành nhân tử là gì? Đó cũng là cách phân tích đa thức thành nhân tử baằng phương pháp đặt nhân tử chung. Ví dụ 2 - Tìm nhân tử chung trong các hạng tử? -Hãy viết thành tích ? 1 Hoạt Động 3: (Aùp dụng) (8 phút) - Thực hiện a, x2 – x b, 5x2 (x-2y) – 15x(x-2y) - Mỗi câu nhân tử chung là gì? c, 3(x-y) – 5x(y-x) Có nhận xét gì về quan hệ x – y và y – x? Biến đổi để có nhân tử chung và thực hiện. ? 2 Muốn xuất hiện nhân tử chung ta phải làm gì? - Thực hiện - Phân tích 3x2 – 6x thành nhân tử - Aùp dụng tính chất A.B = 0 thì A= 0 hoặc B = 0 Hoạt Động 4 :(Củng cố) (10 phút) - Phân tích đa thức thành nhân tử là gì? - Làm bài tập 39 Tr19 – SGK Hs lên bảng làm 2x2 = 2x.x 4x = 2x.2 2x(x-2) - HS trả lời - HS theo dõi - Học sinh nhận xét và thực hiện - HS thực hiện - HS trả lời x – y = -(y – x) - Đổi dấu hạng tử - HS phân tích 3x2 – 6x thành nhân tử - HS trả lời - HS lên bảng làm 1. Ví dụ a. Hãy viết 2x2 -4x thành một tích của những đa thức . Giải 2x2 – 4x = 2x.x -2x.2 = 2x(x-2) * Định nghĩaphân tích đa thức thành nhân tử: SGK b. Phân tích : 15x3 – 5x2 + 10x thành nhân tử Giải 15x3 – 5x2 + 10 = 5x.3x2 – 5x.x + 5x.2 = 5x(3x2 – x + 2) 2. Aùp dụng 1. Phân tích đa thức thành nhân tử a, x2 – x = x(x -1) b, 5x2 (x-2y) – 15x(x-2y) = 5x(x – 2y)(x – 3) c, 3(x-y) – 5x(y-x) = 3(x –y) + 5x(x -y) = (x –y)(3 +5x) * Chú ý: SGK A = -(-A) 2. Tìm x sao cho 3x2 – 6x = 0 3x2 – 6x = 3x(x -2) 3x(x -2) = 0 Hoặc 3x = 0 Hoặc x – 2 = 0 3. Luyện tập Bài 39 (Tr19 – SGK) a, 3x – 6y = 3(x -2y) b, = x2(+ 5x +y) ?1 Hướng dẫn về nhà : (2phút) Học bài trong vở ghi + SGK Làm bài tập :40,41,42 tr 19– SGK Tuần 5 Giáo viên : Tạ Văn Thuận Ngày soạn : 04/10/2004 Ngày dạy : 06/10/2004 Tiết 10 : PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP dùng hằng đẳng thức MỤC TIÊU: Học sinh biết dùng hằng đẳng thức để phân tích đa thức thành nhân tử. Rèn luyện kỹ năng phân tích tổng hợp, phát triển năng lực tư duy. CHUẨN BỊ : Phiếu học tập, đèn chiếu hoặc bảng phụ. NỘI DUNG : GIÁO VIÊN HỌC SINH NỘI DUNG Hoạt Động 1: (Kiểm tra bài cũ) (10 phút) - Cho HS trình bày bài 39 e. - Kiểm tra 7 hằng đẳng thức (A + B)2 = A2 + 2AB + B2 (A - B)2 = A2 - 2AB + B2 (A - B)3 = A3 - 3A2B + 3AB2 - B3 A2 - B2 = (A + B) (A - B) A3+ B3= (A + B)(A2 – AB + B2) A3 - B3= (A - B)(A2 + AB + B2) - 2 HS lên bảng trả lời và làm bài tập. (A + B)2 = . . . . . . Hoạt Động 2: (Tìm quy tắc mới) (10 phút) - Ví dụ : a, x2 – 4x + 4 có dạng hằng đẳng thức nào ? b, x2 – 2 có dạng hằng đẳng thức nào ? c, 1 - 8x3 = ? * Cách làm như trên gọi là phân tích đa thức thành nhân tử băng phương pháp dùng hằng đẳng thức. ? 1 Hoạt Động 3 ( Rèn kỹ năng vận dụng) (10 phút) - Thực hiện : a, x3 + 3x2 + 3x + 1 = ? b, (x + y)2 – 9x2 ? 2 Có dạng hằng đẳng thức nào ? - Thực hiện : Sử dụng phiếu học tập. Aùp dụng : GV Đưa ra ví dụ. ? Để chứng minh (2n + 5)2 – 25 chia hết cho 4 với mọi số nguyên Nguyễn ta làm như thế nào. Hoạt Động 5: (Củng cố) (13 phút) - Làm bài tập 43 Tr 20 SGK - HS hoạt động nhóm đại diên nhóm trình bày bài giải. - HS Bình phương một hiệu (x – 2)2 - HS trả lời ? - HS lắng nghe . . . -HS nhận xét, phân tích để ứng dụng hằng đẳng thức. - HS thực hiện trên phiếu học tập. 1052 – 25 = 1052 – 52 = (105 + 5)(105 – 5) = 11000 - HS ghi bài . . . - HS trả lời . Bài tập 43 a, (x + 3)2 b, -(5 – x)2 c, (2x - )(4x2 + x + ) 1. Ví dụ: - Phân tích đa thức thành nhân tử : a, x2 – 4x + 4 = x2 – 2.2x + 22 = (x – 2)2 b, x2 – 2 = x2 – = (x –)( x +) c, 1 - 8x3 = 13 – (2x)3 = (1 – 2x)(1 + 2x + 4x2) ? 1 - Làm : a, x3 + 3x2 + 3x + 1 = (x + 3)3 b, (x + y)2 – 9x2 = (y – 2x)(4x + y) 2. Aùp dụng: * Ví dụ : Chứng minh rằng : (2n + 5)2 – 25 chia hết cho 4 với mọi n Giải (2n + 5)2 – 25 = (2n + 5)2 – 52 = (2n + 5– 5) (2n + 5 + 5) = 2n(2n + 10) = 4n(n + 5) 4 n Nên (2n + 5)2 – 25 chia hết cho 4 với mọi số nguyên n 3. Luyện tập : Bài tập 43 (Tr20 – SGK) - Phân tích đa thức thành nhân tử : a, x2 + 6x + 9 = (x + 3)2 b, 10x – 25 – x2 = -(5 – x)2 c, 8x3 - = (2x - )(4x2 + x + ) Hướng dẫn về nhà : (2phút) Vận dụng các hằng đẳng thức để làm bài tập : Làm bài tập : 43d, 44, 45, 46 Tr20,21 – SGK Tuần 6 Ngày soạn : Ngày dạy : Tiết 11 : PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP nhóm hạng tử MỤC TIÊU: Học sinh biết phân tích đa thức thành nhân tử bằng phương pháp nhóm số hạng Học sinh biết nhận xét các hạng tử trong đa thức để nhóm hợp lý và phân tích được đa thức thành nhân tử Rèn kĩ năng phân tích đa thức thành nhân tử CHUẨN BỊ : Phiếu học tập, bảng phụ. NỘI DUNG : GIÁO VIÊN HỌC SINH NỘI DUNG Hoạt Động 1: (Kiểm tra bài cũ) (7 phút) - Phân tích các đa thức sau thành nhân tử: a) x2 – 3x b) x2 + 6x + 9 - GV: Bây giờ thầy có đa thức như sau x2 – 3x + xy – 3y bằng phương pháp đã học hãy phân tích đa thức thành nhân tử - Bằng phương pháp đặt nhân tử chung cóphân tích được không ? Vì sao? - Bằng phương pháp dùng hằng đẳng thức có phân tích được không ? - GV: Vậy làm thế nào để phân tích được đa thức này thành nhân tử, đó chính là nội dung bài hôm nay. Hoạt Động 2 (Ví dụ)(15 phút) - Đa thức trên có mấy hạng tử ? - Các hạng tử có nhân tử chung không ? có áp dụng được phương pháp đặt nhân tử chung không ? - Đa thức này có dạng của hằng đẳng thức nào không ? có áp dụng được phương pháp dùng hằng đẳng thức không ? - Như vậy ta đã biết các hạng tử của đa thức không có nhân tử chung nhưng từng nhóm các hạng tử : x2 – 3x và xy – 3y có nhân tử chung không - Nếu đặt nhân tử chung cho từng nhóm : x2 – 3x và xy – 3ythì các em có nhận xét gì ? Hai nhóm này có nhân tử chung không? - GV giới thiệu cách làm như trên gọi là phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử - Nhóm các hạng tử nào ? - Cón cách nhóm nào khác không - GV chia lớp ra làm hai nhóm làm theo hai cách - Ở Ví dụ 1 còn cách nhóm nào khác không Hoạt Động 3: (Aùp dụng) (15 phút) ? 1 - Nêu sử dụng phiếu học tập - Gv gợi ý: x2 + 2x +1 = (x + 1)2 - GV: Hãy nhóm (x2 + 2x) + (1 – y2) và phân tích - Có phân tích tiếp được không Lưu ý ? 2 ? 2 - Nêu các nhóm phân tích đa thức x4 – 9x3 + x2 – 9x thành nhân tử, sau đó phán đoán về lời giải của các bạn mà SGK nêu - GV sử dụng bảng phụ ghi - GV: nhận xét bài làm của HS sửa sai nếu có Hoạt Động 4: (Củng cố) (6 phút) - Chữa bài tập 47a, 48a Tr 22 SGK - 1 HS lên bảng làm bài tập. … - HS: không phân tích được vì các hạng tử của đa thức không có nhân tử chung - HS trả lời - Có 4 hạng tử - Không có nhân tử chung cho tất cả các hạng tử không áp dụng được phương pháp đặt nhân tử chung - Xuất hiện nhân tử x – 3 chung cho cả hai nhóm - Đặt nhân tử chung - (2xy + 6y) + (3z + xz) - (2xy + xz) + (6y + 3z) - 2 HS lên bảng làm - HS trả lời - 1 HS lên bảng thực hiện x2 + 2x +1 – y2 = (x2 + 2x) + (1 – y2) = x(x + 2) + (1 + y)(1 – y) - HS : không phân tích tiếp được - HS hoạt động nhóm phân tích đa thức x4 – 9x3 + x2 – 9x thành nhân tử sau đó rút ra kết luận - 2 HS lên bảng thực hiện Bài 48a (Tr 22 –SGK) x2 + 4x2 – y2 + 4 = (x + 2)2 – y2 = (x + 2 + y)(x + 2 – y) 1. Ví dụ Ví dụ 1.Phân tích đa thức sau thành nhân tử x2 – 3x + xy – 3y = (x2 – 3x) + (xy – 3y) = x(x – 3) + y(x – 3) = (x – 3)(x + y) Ví dụ 2 2xy + 3z + 6y + xz = (2xy + 6y) + (3z + xz) = 2y(x + 3) + z(3 + x) = (x +3)(2y + z) Nhận xét Đối với một đa thức có thể có nhiều cách nhóm các hạng tử thích hợp 2. Aùp dụng a. 15.64 + 25.100 + 36.15 + 60.100 = (15.64 + 36.15) + (25.100 + 60.100) = 15(64 + 36) + 100(25 + 65) = 15.100 + 100.85 = 100(15 + 85) = 100.100 = 10000 b. Phân tích đa thức x2 + 2x +1 – y2 thành nhân tử x2 + 2x +1 – y2 = (x2 + 2x+1) - y2 = (x + 1)2 – y2 = (x + 1 + y)(x + 1 – y) Lưu ý: Phải nhóm các hạng tử một cách thích hợp: - Mỗi nhóm đều có thể phân tích được ? 2 - Sau khi phân tích đa thức thành nhân tử ở mỗi nhóm thì quá trình phân tích phải tiếp tục được x4 – 9x3 + x2 – 9x = (x4 – 9x3) + (x2 – 9x) = x3(x – 9) + x(x – 9) = (x – 9)(x3 + x) = x(x2 + 1)(x – 9) Bài 47a (Tr 22 –SGK) x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + (x – y) = (x – y)(x +1) Hướng dẫn về nhà : (2phút) Vận dụng các phương pháp đã học để làm bài tập Làm bài tập : 47b,d, 48b,c, 49, 50 Tr22,23 – SGK Tuần 7 Ngày soạn : Ngày dạy : Tiết 13 : PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG CÁCH PHỐI HỢP NHIỀU PHƯƠNG PHÁP MỤC TIÊU: Học sinh biết vận dụng linh hoạt các phương pháp phân tích một đa thức thành nhân tử Rèn luyện kỹ năng tính năng động vận dụng kiến thức đã học vào thực tiễn. CHUẨN BỊ : Phiếu học tập, bảng phụ. NỘI DUNG : Hoạt Động 1: (Kiểm tra bài cũ) (7phút) - Chữa bài tập 47c, 48c - Chữa bài tập 49a, 50a Hoạt Động 2: (Ví dụ) (10phút) - Có thể thực hiện phương pháp nào trước tiên ? - Phân tích tiếp x2 + 2xy + y2 thành nhân tử - GV : Như thế là ta đã phối hợp các phương pháp nào đã học để áp dụng váo việc phân tích đa thức ra nhân tử ? Nhận xét : * Nhóm thế nào là hợp lý? x2 – 2xy + y2 = ? Thực hiện làm theo nhận xét - Ta đã sử dụng những phương pháp nào để phân tích ? 1 - Thực hiện ( 1 HS lên bảng, cả lớp làm ra nháp) ? 2 Hoạt Động 3: (Aùp dụng) (10phút) - Thực hiện a - Trước khi thay giá trị của x và y vào biệu thức ta phải làm như thế nào ? - Phân tích được gì ? - Thay số vào tính giá trị = ? - GV yêu cầu Hs trả lời câu b, Gv nhận xét và củng cố phương pháp - GV kết luận sau khi phân tích Hoạt Động 4: (Củng cố) (15phút) - Làm bài 51a,b - GV nhận xét và sửa bài - GV hướng dẫn cho HS về nhà làm bài 53 : dùng thêm phương pháp tách hạng tử - 2 HS lên bảng HS thực hiện: - Đặt nhân tử chung 5x3 + 10x2y + 5xy2 = 5x(x2 + 2xy + y2) - Phân tích x2 + 2xy + y2 ra nhân tử Kết quả 5x3 + 10x2y + 5xy2 = 5x(x + y)2 - Phối hợp 2 phương pháp đặt nhân tử chung và dùng hằng đẳng thức - Nhóm hợp lý x2 – 2xy + y2 – 9 = (x – y)2 – 32 - Aùp dụng phương pháp dùng hằng đẳng thức (x – y)2 – 32 = (x – y + 3)(x – y – 3) - Phương pháp nhóm hạng tử và dùng hằng đẳng thức - HS thực hiện: = 2xy(x2 – y2 – 2y – 1) = 2xy[x2 – (y + 1)2] = 2xy(x + y + 1)(x + y - 1) - HS hoạt động nhóm - Phân tích đa thức thành nhân tử 9100 - HS đứng tại chỗ trả lời - 2 HS lên bảng làm - HS chú ý lắng nghe 1. Ví dụ a) Phân tích đa thức 5x3 + 10x2y + 5xy2 thành nhân tử Giải 5x3 + 10x2y + 5xy2 = 5x(x2 + 2xy + y2) = 5x(x + y)2 b) Phân tích đa thức x2 – 2xy + y2 – 9 thành nhân tử Giải x2 – 2xy + y2 – 9 = (x – y)2 – 32 = (x – y + 3)(x – y – 3) 2. Aùp dụng ? 2 a) Tính nhanh x2 + 2x + 1 – y2 = (x2 + 2x + 1) – y2 = (x + 1)2 – y2 = (x + y + 1)(x – y + 1) (*) Thay x = 94,5 và y = 4,5 vào (*) (94,5 – 4,5 + 1)(94,5 + 4,5 + 1) = 91.100 = 9100 Luyện tập Bài 51 Tr 24 – SGK a. x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2 b. 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2] = 2[(x + 1)2 – y2] = 2(x + y + 1)(x – y + 1) Hướng dẫn về nhà : (2phút) Xem lại các ví dụ Làm bài tập : 51c, 52, 53,54,55,56,57 Tr 24,25 - SGK Tuần 6 Ngày soạn : Ngày dạy : Tiết 12 : LUYỆN TẬP MỤC TIÊU: Rèn luyện kỹ năng giải bài tập phân tích đa thức đa thức thành nhân tử Học sinh giải thành thạo loại bài tập phân tích đa thức thành nhân tử Củng cố, khắc sâu, nâng cao kĩ năng phân tích đa thức thành nhân tử CHUẨN BỊ : Phiếu học tập, bảng phụ. NỘI DUNG : GIÁO VIÊN HỌC SINH NỘI DUNG Hoạt Động 1: (Kiểm tra bài cũ) (10phút) - Nhắc lại các phương pháp phân tích đa thức thành nhân tử - Giải bài tập 54 Tr 25 SGK Hoạt Động 2: (Luyện tập) (32phút) - Để tìm được x trước tiên ta phải làm gì? - Một tích bằng 0 khi nào ? Giải bài 56a Tr 25 SGK - Đa thức trên có dạng hằng đẳng thức nào? - Thay x = 49,75 ta được giá trị bằng bao nhiêu ? Giải bài 57 Tr 25 SGk - Gv giới thiệu phương pháp phân tích đa thức thành nhân tử bằng cách tách hạng tử và thêm bớt cùng một hạng tử qua bài tập 57 - GV hướng dẫn HS làm bài tập 57 ( GV giải thích rõ mục đích của việc thêm bớt hoặc tách cùng một hạng tử là để xuất hiện nhân tử chung hoặc hằng đẳng thức) - Phân tích đa thức thành nhân tử - Một tích bằng không khi có ít nhất một thừa số của tích bằng 0 - HS lên bảng giải - HS hoạt động nhóm - (A + B)2 - HS trả lời - HS theo dõi sự hướng dẫn của GV Bài 55 Tr 25 – SGK Tìm x biết a, x3 - x(x2 - ) = 0 x(x - )(x + ) = 0 x = 0 ; x = b, x2(x – 3) + 12 – 4x = 0 x2(x – 3) + 4(3 – x) = 0 x2(x – 3) - 4(x – 3) = 0 (x – 3)(x2 – 4) = 0 (x – 3)(x – 2)(x + 2) = 0 x = 3 ; x = 2 Bài 56 Tr 25 – SGK Tính nhanh giá trị của đa thức a, tại x = 49,75 = (x + 0,25)2 (*) Thay x = 49,75 vào (*) ta có (49,75 + 0,25)2 = 502 = 2500 Bài 57 Tr 25 – SGK Phương pháp tách hạng tử a, x2 – 4x + 3 = x2 – 4x + 4 - 1 = (x2 – 4x + 4) – 1 = (x – 2)2 – 1 = (x – 1)(x – 3) Phương pháp thêm bớt cùng một hạng tử d, x4 + 4 = x4 + 4x2 + 4 – 4x2 = (x4 + 4x2 + 4) – (2x)2 = (x2 + 2)2 – (2x)2 =(x2 + 2x + 2)(x2 – 2x +2) Hướng dẫn về nhà : (2phút) Xem lại các bài tập đã chữa Làm bài tập : 58 Tr 25 – SGK và bài 34,35,36 SBT Tuần 8 Ngày soạn : Ngày dạy : Tiết 15 : CHIA ĐƠN THỨC CHO ĐƠN THỨC MỤC TIÊU: Học sinh hiểu khái niệm đa thức A chia hết cho đa thức B Học sinh nắm vững khi nào đơn thức A chia hết cho đơn thức B Học sinh thực hiện thành thạo chia đơn thức cho đơn thức CHUẨN BỊ : Phiếu học tập, bảng phụ. NỘI DUNG : GIÁO VIÊN HỌC SINH NỘI DUNG Hoạt Động 1: (Kiểm tra bài cũ) (5 phút) - Nhắc lại quy tắc chia hai luỹ thừa cùng cơ số, công thức ? Hoạt Động 2: (Bài mới) (15 phút) - GV giới thiệu : A B nếu Q sao cho A = B.Q Kí hiệu Q = A : B hoặc Q = - A, B, Q gọi là gì ? - Ở lớp dưới ta đã biết : Với mọi x 0 , m,n N, m n thì ? 1 xm : xn = ? ? 2 - Thực hiện - Đơn thức A chia hết cho đơn thức B khi nào ? Nhận xét - Vậy muốn chia đơn thức A cho đơn thức B ( trường hợp A B) ta làm như thế nào? Quy tắc Hoạt Động 3: (Aùp dụng) (10 phút) ? 3 - Thực hiện a, 15x3y5z : 5x2y3 bb= ? b, P = 12x4y2 : (-9xy2) Hoạt Động 4: (Củng cố) (13 phút) - Làm bài tập 59a,b - Làm bài tập 60a,61a - HS trả lời - HS theo dõi - HS trả lời - HS hoạt động nhóm, đại diện từng nhóm trả lời - HS trả lời - HS trả lời - 2HS lên bảng làm, cả lớp làm vào vở - 2 HS lên bảng làm, cả lớp làm vào vở - HS hoạt động nhóm * Khái niệm : AB nếu Q sao cho : A = B.Q Q = A : B hoặc Q = 1. Quy tắc xm : xn = xm – n (nếu m > n) xm : xn = 1 ( nếu m = n ) Với m, n N Nhận xét: Tr 26 – SGK Quy tắc : Tr 26 – SGK 2. Aùp dụng ? 3 a, 15x3y5z : 5x2y3 = 3xy2z b, P = 12x4y2 : (-9xy2) = x3 (*) Thay x = -3 vào (*) ta có (-3)3 = 36 Luyện tập Bài 59 a, 53 : (-5)2 = 53 : 52 = 5 b, Bài 60a) x10 : (-x)8 = x2 Bài 61a) 5x2y4: 10x2y = y3 Hướng dẫn về nhà : (2phút) Học thuộc quy tắc Làm bài tập : 60b,c; 61b,c Tr 27 – SGK

File đính kèm:

  • docTuan 5 - 7.doc