1.Mục tiêu
1.1Về kiến thức
-Củng cố kiến thức về dấu của tam thức bậc 2
-Hoạc sinh nắm vững vê giải bất phương trình
1.2Về kỹ năng
-Rèn luyện cách giải bài tập xét dấu tam thức bậc 2
-Học sinh giải được các bất phương trinh bậc hai một ẩn
1.3 Về tư duy
-Qui lạ về quen
3 trang |
Chia sẻ: thumai89 | Lượt xem: 1205 | Lượt tải: 4
Bạn đang xem nội dung tài liệu Bài giảng Tiết : 42 Luyện tập (tiếp), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn :
Ngày giảng :
Tiết : 42 luyện tập
1.Mục tiêu
1.1Về kiến thức
-Củng cố kiến thức về dấu của tam thức bậc 2
-Hoạc sinh nắm vững vê giải bất phương trình
1.2Về kỹ năng
-Rèn luyện cách giải bài tập xét dấu tam thức bậc 2
-Học sinh giải được các bất phương trinh bậc hai một ẩn
1.3 Về tư duy
-Qui lạ về quen
1.4 Về thái độ
-Hứng thú , chú ý học tập
2.Chuẩn bị
2.1Thực tiễn
-Học sinh chuẩn bị kiến thức đã học
2.2Phương tiện
-Biểu bảng , các hình vẽ
-Đề bài phát cho học sinh
3.Về phương pháp dạy học
-Gợi mở vấn đáp
-Chia nhóm nhỏ học tập
4.Tiến trình bài học và các hoạt động
4.1Các tình huống,hoạt động học tập
-Hoạt động 1:
-Hoạt động 2:
-Hoạt động 3:
-Hoạt động 4:
-Hoạt động 5:
-Hoạt động 6:
4.2Tiến trình bài học
1.ổn định tổ chức , kiểm tra sĩ số
2.Kiểm tra bài cũ
-Câu 1: Nêu định nghĩa bất phương trình bậc hai một ẩn
-Câu 2: Nêu định lý về dấu của tam thức bậc 2
3.Bài mới
Hoạt động 1
Hoạt động của HS
Hoạt động của GV
Nội dung
*Học sinh giải bài:
a) f(x) = x2 +12x + 36
tam thức có nghiệm
kép x = - 6 ( a> 0)
f(x) cùng dấu với a với mọi x
b) f(x) = -2x2 + 3x + 5
tam thức có hai nghiệm x = -1 , x = 5/2
(hệ số a < 0)
f(x) < 0 khi x < -1
hoặc x > 5/2
f(x) = 0 khi x = -1
hoặc x = 5/2
f)x) > 0 khi -1< x<5/2
*Nhắc lại định lý dấu tam thức bậc 2
* Cho học sinh xác định hệ số a , (hệ số a trong tam thức được xét dương hay âm )
Bài 1: xét dấu các tam thức bậc 2 sau :
a) x2 +12x + 36
b) -2x2 + 3x + 5
Hoạt động 2
Hoạt động của HS
Hoạt động của GV
Nội dung
Học sinh thực hiện
x
-3 -1/3 5/4
(1)
+ 0 - 0 + +
(2)
- - - 0 +
f(x)
- 0 + 0 - 0 +
xét dấu tam thức ,
nhị thức và dấu f(x)
*Hướng dẫn học sinh giải bài
+ bảng xét dấu gồm các hàng x , tam thức
(1) = 3x2+ 10x+3 ,
(2) = 4x - 5 và hàng f(x)
x
-3 -1/3 5/4
(1)
(2)
f(x)
Bài 2: Lập bảng xét dấu
a) f(x) = (3x2+ 10x+3)x
(4x-5)
Hoạt động 3
Hoạt động của HS
Hoạt động của GV
Nội dung
*Học sinh giải bài :
a) ∆ < 0 , 4x2 - x + 2
luôn > 0 với mọi x vậy BPT vô nghiệm
b) f(x) = 4x2 - 6 x + 2
có 2 nghiệm 1 và 0,5
x
0,5 1
f(x)
+ 0 - 0 +
Từ bảng xét dấu thấy
BPT có nghiệm
0,5 < x < 1
c) f(x) = -3x2 + x + 4
có nghiệm là : 1 và 4/3
x
1 4/3
f(x)
- 0 + 0 -
nghiệm của BPT là
1 ≤ x ≤ 4/3
*Hướng dẫn : giải bất phương trình thực chất là xét dấu vế trái
Nghiệm của BPT a) là những giá trị của x để tam thức vế trái âm
Nghiệm cảu b) là những giá trị của x để tam thức vế trái không âm
Bài 3: giải các bất phương trình sau
a) 4x2 - x + 2 < 0
b) 4x2 - 6x + 2 < 0
c) -3x2 + x + 4 ≥ 0
3.Củng cố toàn bài
-Để xét dấu của tam thức phải thuộc định lý vàê dấu của tam thức
Δ < 0 tam thức cùng dấu với a với mọi x
Δ = 0 tam thức cùng dấu với a với mọi x khác nghiệm
Δ > 0 tam thức cùng dấu với a với x nằm ngoài khoảng 2 nghiệm
Tam thức trái dấu với a với x nằm trong khoảng hai nghiệm
- Giải bất phương trình ax2 + bx + c > 0 ta xét dấu tam thức
f(x) = ax2 + bx + c từ dấu của f(x) suy ra nghiệm của bất phương
trình
4.Bài tập về nhà : Học sinh làm các bài tập trang 105
File đính kèm:
- D10-42.doc