Bài Tập ôn chương II - Hình học 11

I) QUAN HỆ SONG SONG

1) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M, N, P lần lượt là trung điểm của AB, CD, SA . Chứng minh

2) Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AD, C’D’.CMR:

 3) Cho tứ diện đều ABCD cạnh a và một điểm M thuộc cạnh BC, đặt BM=x(0≤ x≤ a)

 a. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng đi qua M và song song với các cạnh AB,AD.Tính chu vi và diện tích thiết diện theo a,x

 b. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng (P) đi qua M và song song với các cạnh AB,CD.chứng minh rằng chu vi của thiết diện không phụ thuộc vào vị trí của điểm M trên cạnh BC

3) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Xác định thiết diện của hình chóp cắt bởi đi qua trung điểm M của AB và song song với BD và SA

4) Cho hình chóp S.ABCD có đáy ABCD là 1 tứ giác . Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi đi qua điểm O và song song AB và SC.

 

doc4 trang | Chia sẻ: luyenbuitvga | Lượt xem: 3553 | Lượt tải: 4download
Bạn đang xem nội dung tài liệu Bài Tập ôn chương II - Hình học 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài Tập ôn chương II I) QUAN HỆ SONG SONG Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M, N, P lần lượt là trung điểm của AB, CD, SA . Chứng minh Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của AD, C’D’.CMR: 3) Cho tứ diện đều ABCD cạnh a và một điểm M thuộc cạnh BC, đặt BM=x(0≤ x≤ a) a. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng đi qua M và song song với các cạnh AB,AD.Tính chu vi và diện tích thiết diện theo a,x b. Xác định thiết diện của tứ diện khi cắt bởi mặt phẳng (P) đi qua M và song song với các cạnh AB,CD.chứng minh rằng chu vi của thiết diện không phụ thuộc vào vị trí của điểm M trên cạnh BC Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Xác định thiết diện của hình chóp cắt bởi đi qua trung điểm M của AB và song song với BD và SA Cho hình chóp S.ABCD có đáy ABCD là 1 tứ giác . Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi đi qua điểm O và song song AB và SC. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, tâm O Mặt bên SAB là tam giác đều, ngoài ra . Gọi Dx là đường thẳng qua D và song song với SC. Tìm Giao điểm của Dx Với mp(SAB).CMR AI//SB. Tìm thiết diện của hình chóp với mp(AIC). Tính diện tích thiết diện. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm của SA, SB, SC. Tìm giao điểm L của SD và (IJK) Chứng minh , Gọi M là giao điểm của CJ và DI, N là giao điểm của BI và CL chứng minh Cho hình chóp S.ABCD có đáy ABCD là hình thang , đáy lớn AB gọi I, J, K là 3 điểm trên SA, AB, BC theo thứ tự đó Tìm giao điểm IK với (SBD) Tìm giao điểm của mp(IJK) với SD và SC Cho hình chóp S.ABCD. Gọi I, J là 2 điểm trên cạnh AD và SB Tìm giao điểm K, L của IJ và DJ với mp(SAC) AD cắt BC tại O, OJ cắt SC tại M . chứng minh rằng 4 điểm A, K, L, M thẳng hàng. Cho tứ diện ABCD. Gọi A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, CDA, ABD, ABC. chứng minh rằng AA’, BB’ cùng nằm trong một mặt phẳng. Gọi I là giao điểm của AA’ và BB’ chứng minh Chứng minh các đường thẳng AA’,BB’, CC’, DD’ đồng quy. Cho hình chóp S.ABCD có đáy ABCD là hình thang , đáy lớn AB gọi M và N lần lượt là trung điểm của SB, SC Tìm giao tuyến (SAD) và (SBC) Tìm giao điểm của SD với (AMN) Tìm thiết diện của hình chóp S.ABCD với (AMN) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, Gọi M là trung điểm củaSC. a) Tìm giao điểm I của AM với mp(SBD). CMR IA= 2IM b) Tìm giao điểm F của của SD với mp(ABM). Cmr F là trung điểm của SD và tứ giác ABMF là hình gì ? c) Gọi N thuộc AB. Tìm giao điểm MN và (SBD) 13) Cho hình chóp tứ giác S.ABCD. Trong tam giác SCD lấy điểm M a) Tìm giao điểm của BM với (SAC). b) Tìm thiết diện của hình chóp với (ABM). 14) Cho tứ diện đều ABDC cạnh a. Kéo dài BC một đoạn CE=a. Kéo dài BD một đoạn DF=a. Gọi M là trung điểm của AB a) Tìm thiết diện của tứ diện với (MEF). b) Tính diện tích thiết diện theo a. 15) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, Gọi M, N, P lần lượt là trung điểm của SB, SD và OC a) Tìm giao điểm của SA với (MNP). b) xác định thiết diện của hình chóp với (MNP) 16) Cho tứ diện ABCD. Gọi I, J lầ lượt là trung điểm của AC và BC. Trên cạnh BD lấy điểm K sao cho BK=2KD a) Tìm giao điểm E của CD với (IJK). Cmr DE=DC b) Tìm giao điểm F của AD với (IJK). Cmr FA=2FD c) Cmr : FK//IJ d) Gọi M, N là hai điểm bất kỳ lần lượt trên AB, CD . tìm giao điểm cùa MN với (IJK). 17) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. a) Tìm giao tuyến của (SAD) và (SBC) b) Lấy M là điểm tùy ý trên SC nhưng không trùng với S mp(ABM) cắt SD tại N. Tứ giác ABMN là hình gì ? 18) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Gọi H,K,I,J lần lượt là trung điểm của các cạnh SA,SB,SC,SD. a) CMR: HKIJ là một hình bình hành b) Gọi M là điểm bất kỳ trên BC. Tìm thiết diện của hình chóp với (HKM) 19) Cho tứ diện ABCD. Gọi M,N,P,Q , R, S lầ lượt là trung điểm của AB, CD,BC,AD,AC và BD. a) CMR: MPNQ là hình bình hành b) CMR: MN,PQ,RS đồng quy 20) Cho tứ diện ABCD. Trên AD lấy N sao cho AN=2ND, M là trung điểm của AC, trên BC lấy Q sao cho a) Tìm giao điểm I của MN với (BCD).Tính b) Tìm giao điểm J của BD với (MNQ). Tính 21) Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. a) Gọi O và O’ lần lượt là tâm của ABCD và ABEF . CMR OO’//(ADF) và OO’//(BCE). b) Gọi M, N là trọng tâm của tam giác ABD và ABE. CMR : MN//(CEF). 22) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Gọi M, N lần lượt là trung điểm của các cạnh ABvà CD a) CMR: MN//(SBC) ,MN//(SAD) b) Gọi P là trung điểm của SA. CMR: SB//(MNP), SC//(MNP). 23) Cho tứ diện ABCD. Trên AD lấy M sao cho AM=MD, trên BC lấy N bất kỳ . Gọi () là mặt phẳng chứa MN và song song với CD. a) Tìm thiết diện của tứ diện với mp(). b) xác định vị trí của N trên BC sao cho thiết diện là một hình bình hành. 24) Cho hai hình vuông ABCD và ABEF không cùng nằm trong một mặt phẳng.trên AC và BF lấy M,N sao cho AM=BN. Các đường thẳng song song với AB kẻ từ M,N cắt AD,AF tại M’,N’. a) Cmr mp(BCE)//((ADF) b) CMR: (DEF)//(MNN’M’). 25) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lầ lượt là trung điểm của SA,SD. a) CMR: (OMN)//(SBC) b) Gọi P,Q lần lượt là trung điểm của AB và ON.CMR: PQ//(SBC). 26) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lầ lượt là trung điểm của SA, SB, SC. CMR: (HIK)//(ABCD) Gọi M là giao điểm của AI và KD, N là giao điểm của DH và CI. CMR: (SMN)//(HIK) 27) Cho hình lập phương ABCD.A’B’C’D’cạnh a. Gọi M, N, P lần lượt là trung điểm của AB, B’C’, DD’. a) CMR: (MNP)//(A’B’D) và (BDC’) b) Xác định thiết diện của hình lập phương với mp(MNP)? Thiết diện là hình gì? Tính diện tích thiết diện. 28) Cho hình lăng trụ tam giác ABC.A’B’C’. a) Gọi I, K, G lần lượt là trọng tâm các tam giác ABC, A’B’C’, ACC’. CMR: (IGK)//(BB’C’C) và (A’KG)//(AIB’). b) Gọi M, N lần lượt là trung điểm của BB’ và CC’ hãy dựng đường thẳng qua trọng tâm tam giác ABC cắt AB’ và MN. 29) Cho hình hộp ABCD.A’B’C’D’. có các cạnh AA’, BB’, CC’, DD’song song với nhau a) CMR: (BDA’)//(B’D’C) b) CMR đường chéo AC’ đi qua trọng tâm G1 và G2 của hai tam giác BDA’ và B’D’C. c) CMR: G1 , G2 chia đoạn AC’ thành 3 phần bằng nhau. 30) Cho hình lập phương ABCD.A’B’C’D’. E. F, G lần lượt là trung điểm của AA’, BB’, CC’. Chứng minh rằng: a) (EFG)//(ABCD) b) xác định giao tuyến của hai mặt phẳng (ABD) và (C’D’D) c) Tìm giao điểm của A’C và (C’BD) II) VÉC TƠ TRONG KHÔNG GIAN Cho tứ diện ABCD.Gọi E, F lần lượt là trung điểm của AB, CD.I Là trung điểm của EF CMR: CMR: (M Tùy Ý) 2) III) QUAN HỆ VUÔNG GÓC 24) Trong mp() cho tam giác ABC vuông tại A AB=a. Gọi O là trung điểm của BC. Lấy điểm S ở ngoài mp() sao cho SB=a và . Gọi M là một điểm trên cạnh AB, Mặt phẳng () qua M và song song với SB và OA cắt BC,SC,SA lần lượt tại N, P, Q. đặt BM=x Chứng minh MNPQ là hình thang vuông Tính theo a,x diện tích hình thang này. Tìm x để diện tích hình thang là lớn nhất. (3)Cho hai hình chữ nhật ABCD và ABEF không cùng nằm trong một mặt phẳng và thỏa mãn các điều kiện : AB=a; AD=AF=; đường thẳng AC vuông góc với đường thẳng BF. Gọi HK là đường vuông góc chung của AC và BF(H thuộc AC , K thuộc BF). Gọi I là giao điểm của đường thẳng DF với mặt phẳng chứa AC và song song với BF. Tính tỉ số Tính độ dài đoạn HK Tính bán kính mặt cầu nội tiếp tứ diện ABHK. Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng a. Hai điểm M,N chuyển động trên hai đoạn thẳng BD và B’A tương ứng sáo cho BM=B’N=t . Gọi lần lượt là các góc tạo bởi đường thẳng MN với các đường thẳng BD và B’A. Tính độ dài MN theo a,t. Tìm t để độ dài MN ngắn nhất. Tính khi độ dài MN ngắn nhất. Trong trường hợp tổng quát chứng minh hệ thức Cho hình chóp S.ABCD có đáy ABCD là hình vuông. chứng minh rằng : , ,. Cho hình chóp S.ABCD có đáy ABCD là hình vuông. gọi H,I,K lần lượt là hình chiếu vuông góc của A xuống SB, SC, SD chứng minh rằng : a), . b) , Cho hình chóp S.ABC có . Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC chứng minh Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A,B. BA=BC=a,AD=2a, . CMR tam giác SCD vuông. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật , AB=a,AD=,. M là trung điểm của AD.CMR: Cho hình chóp S.ABC có đáy ABC vuông tại B, AB=a, BC=2a ,, SA=2a, Mlaf trung điểm của SC. CMR: Tam giác ABM cân tại M Và tính diện tích. Cho hình chóp S.ABCD có đáy ABCD là hình vuông, Mặt bên (SAD) là tam giác đều và vuông góc với đáy. M,N,P lần lượt là trung điểm của SB,BC,CD. CMR: (46) Cho tứ diện OABC có các cạnh OA, OB, OC, đôi một vuông góc với nhau và OA=OB= OC=a. Gọi K, M, N lần lượt là trung điểm các cạnh AB, BC, CA. Gọi E là điểm đối xứng của O qua K và I là giao điểm của CE với mp(OMN) CM CE vuông góc với mp(OMN) Tính diện tích cử tứ giác OMIN theo a. (45) Cho tứ diện SABC có SC=CA=AB=, , Tam giác ABC vuông tại A, các điểm M thuộc SA và N thuộc BC sao cho AM=CN=t Tính độ dài đoạn thẳng MN Tìm Giá trị của t để MN ngắn nhất Khi đoạn thẳng MN ngắn nhất , CM : MN là đường vuông góc chung của BC và SA. 36) Cho hình chóp S.ABC có AB=AC=a, , . Gọi I là trung điểm của BC chứng minh . Tính AH , mp(R) qua , cắt AB, AC, SC, SB lần lượt tại các điểm M, N, P, Q. MNPQ là hình gì? Tính diện tích MNPQ. Cho hình chóp ABCD có , Gọi H, là trực tâm của tam giác ACD chứng minh .

File đính kèm:

  • docBai Tap on chuong II Hinh hoc 11.doc
Giáo án liên quan