Bài tập về Đường thẳng

Bài 1: Trong mặt phẳng tọa độ, tam giác ABC có A(1; 3) và phương trình hai trung tuyến lần lượt xuất phát từ B và C là: và .

a) Xác định tọa độ đỉnh B và C.

b) Viết phương trình đường thẳng đối xứng của AC qua BC.

Bài 2: Tam giác ABC có A(4; 1). Đường cao BH có phương trình và trung tuyến BM có phương trình . Viết phương trình ba cạnh của tam giác ABC.

 

doc3 trang | Chia sẻ: luyenbuitvga | Lượt xem: 1153 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài tập về Đường thẳng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐƯỜNG THẲNG Bài 1: Trong mặt phẳng tọa độ, tam giác ABC có A(1; 3) và phương trình hai trung tuyến lần lượt xuất phát từ B và C là: và . Xác định tọa độ đỉnh B và C. Viết phương trình đường thẳng đối xứng của AC qua BC. Bài 2: Tam giác ABC có A(4; 1). Đường cao BH có phương trình và trung tuyến BM có phương trình . Viết phương trình ba cạnh của tam giác ABC. Bài 3: Tam giác ABC có A(2;-1), phương trình hai đường cao là .Viết phương trình đường cao thứ ba và trung tuyến AM. Bài 4: Tam giác ABC có A(2; -7), đường cao và trung tuyến vẽ từ hai đỉnh khác nhau lần lượt có phương trình là và . Viết phương trình các cạnh của tam giác ABC. Bài 5: Tam giác ABC có phương trình hai cạnh là và . Hãy viết phương trình của cạnh còn lại, biết rằng trực tâm của tam giác là gốc tọa độ O. Bài 6: Tam giác ABC có diện tích , trọng tâm G của tam giác thuộc đường thẳng có phương trình . A(2;-3), B(3; -2). Hãy xác định tọa độ của đỉnh C. Bài 7: Tam giác ABC có A(1; 2), phân giác trong của góc B có phương trình , trung tuyến CM có phương trình . Viết phương trình các cạnh của tam giác ABC. Bài 8: Viết phương trình đường thẳng d đi qua A(1; 2) và cách đều hai điểm M(2; 3) và N(4;-5). Bài 9: Viết phương trình đường thẳng cách M(2; 3) một khoảng bằng 2 và cách N(4; -5) một khoảng bằng 4. Bài 10: Cho hai đường thẳng: Chứng minh: khi m thay đổi thì hai đường thẳng trên lần lượt qua hai điểm A, B cố định. Chứng minh rằng chúng cắt nhau và giao điểm nằm trên một đường tròn cố định. Xác định m để khoảng cách từ B đến đường thẳng đạt giá trị lớn nhất. Bài 11: Cho đường thẳng và các điểm A(1; 2), B(0;1), C(2; 1). Tìm M trên d sao cho: MA + MB đạt giá trị lớn nhất và nhỏ nhất. MA + MC đạt giá trị lớn nhất và nỏ nhất. đạt giá trị lớn nhất và nhỏ nhất. đạt giá trị lớn nhất và nhỏ nhất. Bài 12: Cho A(2; 0). M là một điểm di động trên trục y’Oy có tung độ là a>0. Đường thẳng d đi qua A có hệ số gócM. Tính khoảng cách từ M đến d theo a và m. Định m theo a sao cho d là đường thẳng đối xứng của x’Ox qua MA. Suy ra phương trình đường thẳng d trong trường hợp đó. Bài 13: Khối A đợt 1 2002. Trong mặt phẳng tọa độ Oxy xét tam giác ABC vuông tại A, phương trình đường thẳng BC là , các đỉnh A, B thuộc trục hoành và bán kính đường tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của tam giác. Bài 14: Khối B đợt 2 2002. Trong mặt phẳng tọa độ, cho hình chữ nhật ABCD có tâm , phương trình đường thẳng AB là và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D. Biết A có hoành độ âm.

File đính kèm:

  • docbt đường thẳng.doc
Giáo án liên quan