Bộ đề ôn thi học kì II môn Toán 11 (2008 - 2009)

Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy , SA = a .

1. Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.

2. CMR (SAC) (SBD) .

3. Tính góc giữa SC và mp ( SAB ) .

4. Tính góc giữa hai mặt phẳng ( SBD ) và ( ABCD ) .

 

doc19 trang | Chia sẻ: lephuong6688 | Lượt xem: 853 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bộ đề ôn thi học kì II môn Toán 11 (2008 - 2009), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ ĐỀ ÔN THI HKII TOÁN 11 (2008 - 2009) Đề 1 I .Phần chung cho cả hai ban Bài 1. Tìm các giới hạn sau: 1. 2. 3. 4. Bài 2. Xét tính liên tục của hàm số sau trên tập xác định của nó. Chứng minh rằng phương trình sau có ít nhất hai nghiệm : . Bài 3 . Tìm đạo hàm của các hàm số sau : a . b . 2 . Cho hàm số . a . Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = - 2. b . Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d : y = . Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy , SA = a. Chứng minh rằng các mặt bên hình chóp là những tam giác vuông. CMR (SAC) (SBD) . Tính góc giữa SC và mp ( SAB ) . Tính góc giữa hai mặt phẳng ( SBD ) và ( ABCD ) . II . Phần tự chọn. 1 . Theo chương trình chuẩn . Bài 5a . Tính . Bài 6a . Cho . Giải bất phương trình . Theo chương trình nâng cao . Bài 5b . Tính . Bài 6b. Cho . Giải bất phương trình . Đề2 I . Phần chung . Bài 1 : Tìm các giới hạn sau : 1 . 2 . 3 . 4. . Bài 2 . 1 . Cho hàm số f(x) = Xác định m để hàm số liên tục trên R.. 2 . Chứng minh rằng phương trình : luôn có nghiệm với mọi m. Bài 3 . 1 . Tìm đạo hàm của các hàm số : a . y = b . y = . 2 . Cho hàm số y = ( C ) . Viết phương trình tiếp tuyến của ( C ) . a . Tại điểm có tung độ bằng 3 . b . Vuông góc với d : x - 2y – 3 = 0 . Bài 4 . Cho tứ diện OABC có OA , OB , OC , đôi một vuông góc và OA= OB = OC = a , I là trung điểm BC . 1 . CMR : ( OAI ) ( ABC ) . 2. CMR : BC ( AOI ) . 3 . Tính góc giữa AB và mp ( AOI ) . 4 . Tính góc giữa đường thẳng AI và OB . II . Phần tự chọn . 1 . Theo chương trình chuẩn . Bài 5a .Tính . Bài 6a . cho y = sin2x – 2cosx . Giải phương trình = 0 . 2 . Theo chương trình nâng cao . Bài 5b . Cho y = . CMR . Bài 6b . Cho f( x ) = . Giải phương trình f ‘(x) = 0 ĐỀ 3: Bài 1. Tính các giới hạn sau: 1. 2. 3. 4. 5. lim Bài 2. Cho hàm số : f(x) =. Xác định a để hàm số liên tục tại điểm x = 2. Bài 3. Chứng minh rằng phương trình x5-3x4 + 5x-2 = 0 có ít nhất ba nghiệm phân biệt trong khoảng (-2 ;5 ) Bài 4. Tìm đạo hàm các hàm số sau: 1. 2. 3. 4. y = sin(sinx) Bài 5. Hình chóp S.ABC. DABC vuông tại A, góc = 600 , AB = a, hai mặt bên (SAB) và (SBC) vuông góc với đáy; SB = a. Hạ BH ^ SA (H Î SA); BK ^ SC (K Î SC). 1. CM: SB ^ (ABC) 2. CM: mp(BHK) ^ SC. 3. CM: DBHK vuông . 4. Tính cosin của góc tạo bởi SA và (BHK) Bài 6. Cho hàm số f(x) = (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1) biết tiếp tuyến đó song song với đường thẳng y = -5x -2 Bài 7. Cho hàm số y = cos22x. 1. Tính y”, y”’. 2. Tính giá trị của biểu thức: A= y’’’ +16y’ + 16y – 8. ĐỀ 4: Bài 1. Tính các giới hạn sau: 1. 2. 3. 4. 5. Bài 2. Cho hàm số: . Xác định a để hàm số liên tục tại điểm x = 1. Bài 3. CMR phương trình sau có it nhất một nghiệm âm: Bài 4. Tìm đạo hàm các hàm số sau: 1. 2. 3. 4. y = sin(cosx) Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và SA = 2a. 1. Chứng minh ; 2. Tính góc giữa SD và (ABCD); SB và (SAD) ; SB và (SAC); 3. Tính d(A, (SCD)); d(B,(SAC)) Bài 6. Viết PTTT của đồ thị hàm số . 1. Biết tiếp tuyến tại điểm M ( -1; -2) 2. Biết tiếp tuyến vuông góc với đt . Bài 7. Cho hàm số: . Chứng minh rằng: 2y.y’’ – 1 =y’2 ĐỀ 5: A. PHẦN CHUNG: Bài 1: Tìm a) b) Bài 2: Xét tính liên tục của hàm số sau trên tập xác định của nó Bài 3: : Tính đạo hàm a) b) c) d) Bài 4: Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a có góc BAD = 600 và SA=SB = SD = a Chứng minh (SAC) vuông góc với (ABCD) Chứng minh tam giác SAC vuông Tính khoảng cách từ S đến (ABCD) B. PHẦN TỰ CHỌN: I. BAN CƠ BẢN: Câu 5:Cho hàm số y = f(x) = 2x3 – 6x +1 (1) Tính Viết phương trình tiếp tuyến của đồ thị hàm số (1) tại điểm Mo(0; 1) c)Chứng minh phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (-1; 1) II. BAN NÂNG CAO Câu 5:Cho . Giải phương trình . Câu 6:Cho hàm số (C) a) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song đường thẳng b) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc đường thẳng ĐỀ 6: A. PHẦN CHUNG Câu 1: Tìm giới hạn a) b) c) d) e) f) Câu 2: Cho hàm số . a, Xét tính liên tục của hàm số khi m = 3 b, Với giá trị nào của m thì f(x) liên tục tại x = 2 ? c, Tìm m để hàm số liện tục trên tập xác định của nó? Câu 3: Chứng minh phương trình x5-3x4 + 5x-2= 0 có ít nhất ba nghiệm phân biệt trong khoảng (-2 ;5 ) Câu 4: Tính đạo hàm a) b) c) d) e) f) B.PHẦN TỰ CHỌN: I. BAN CƠ BẢN Câu 5:Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng 2a. gọi O là tâm của đáy ABCD. a) CMR (SAC) ^(SBD), (SBD)^(ABCD). b) Tính khoảng cách từ điểm S đến mp(ABCD),từ điểm O đến mp(SBC). c) Dựng đường vuông góc chung và tính khoảng cách giữa hai đường thẳng chéo nhau BD và SD. II. BAN NÂNG CAO Câu 5: Cho tam giác ABC vuông cân tại A, AB=BC=a, I là trung điểm cạnh AC, AM là đường cao tam giác SAB. Ix là đường thẳng vuông góc với mp (ABCtại I, trên Ix lấy S sao cho IS = a. a)Chứng minh AC SB, SB (AMC) b) Xác định góc giữa đường thẳng SB và mp(ABC) c) Xác định góc giữa đường thẳng SB và mp(AMC) Đề 7: I. PHẦN BẮT BUỘC: Câu 1 (1 điểm): Tính giới hạn sau: a) b) Câu 2 (1 điểm): Cho hàm số Xét tính liên tục của hàm số tại x = Câu 3 (1 điểm): CMR phương trình sau có ít nhất một nghiệm trên [0;1] X3 + 5x – 3 = 0 Câu 4 (1,5 điểm): Tính đạo hàm sau: a) y = (x + 1)(2x – 3) b) Câu5 (2,5 điểm) : Cho hình chóp S.ABCD, ABCD là hình thoi tâm O cạnh a, góc BAD=600 , đường cao SO= a Gọi K là hình chiếu của O lên BC. CMR : BC (SOK) Tính góc của SK và mp(ABCD) Tính khoảng cách giữa AD và SB II. PHẦN TỰ CHỌN 1. BAN CƠ BẢN: Câu 6(1,5 điểm): Cho hàm số: y = 2x3 7x + 1 viết phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x = 2 viết phương trình tiếp tuyến của đồ thị có hệ số góc k = -1 Câu 7: (1,5 điểm): Cho hình chóp tam giác, dáy ABC đều, SA (ABC), SA= a. M là điểm trên AB, góc ACM = , hạ SH CM a) Tìm quỹ tích điểm H khi M di động trên AB b) Hạ AITính SK và AH theo a và 2. BAN NÂNG CAO: Câu 8(1,5 điểm): Cho (p): y = 1 – x +, (C) : CMR : (p) tiếp xúc với (C) viết phương trình tiếp tuyến chung của (p) và (C) tại tiếp điểm Câu 9(1,5 điểm): Cho hình lập phương ABCDA’B’C’D’ cạnh a. Lấy điểm M thuộc đoạn AD’, điểm N thuộc đoạn BD sao cho (0 < x < a). Tìm x để đoạn thẳng MN ngắn nhất Khi MN ngắn nhất, hãy chứng tỏ MN là đường vuông góc chung của AD’ và BD, đồng thời MN // A’C Đề 8: Câu 1 (1 điểm): Tính giới hạn sau: a) b) Câu 2 (1 điểm): Cho hàm số Định a để hàm số liên tục tại x = 1 Câu 3 (1 điểm): Cmr phương trình 2x3 – 6x + 1 = 0 có 3 nghiệm trên [-2 ; 2] Câu 4 (1,5 điểm): Tính đạo hàm sau: a) b) y = sinx cos3x Câu 5 ( 2,5điểm)) : Cho hình chóp S.ABCD, ABCD là hình vuông cạnh a, hai mặt bên (SAB) , (SBC) vuông góc với đáy, SB = a Gọi I là trung điểm SC. Cmr: (BID) (SCD) CMR các mặt bên của hình chóp là các tam giác vuông Tính góc của mp(SAD) và mp(SCD) II. PHẦN TỰ CHỌN: 1. 1.BAN CƠ BẢN: Câu 6(1,5 điểm): Cho Hyperbol: y = . Viết phương trình tiếp tuyến của(H) a)Tại điểm có hoành độ x0 = 1 b)Tiếp tuyến song song với đường thẳng y = Câu 7 (1,5 điểm) : Cho lăng trụ tam giác ABCA’B’C’. Gọi I, J, K, là trọng tâm tam giác ABC, A’B’C’, ACC’. CMR: (IJK) // (BB’C’C) b)(A’JK) // (AIB’) 2. BAN NÂNG CAO: Câu 8(1 điểm): Giải và biện luận phương trình f’(x) = 0, biết f(x) = sin2x + 2(1 – 2m)cosx – 2mx Câu 9 (2 điểm): Cho hình chóp S.ABCD, ABCD là hình thang vuông , AB = a, BC = a, góc ADC bằng 450. Hai mặt bên SAB, SAD cùng vuông góc với đáy, SA = a Tính góc giữa BC và mp(SAB) Tính góc giữa mp(SBC) và mp(ABCD) c)Tính khoảng cách giữa AD và SC A.Bắt buộc Bài 1: 1/Tính giới hạn: a/ b/ 2/Cho f(x)= .Tìm a để hàm số liên tục tại x=1 3/Cho y=f(x)=x3-3x2+2 a/Viết ptrình tiếp tuyến của đồ thị hàm số f(x) biết tiếp tuyến song song (d):y=-3x+2008 b/CMR ptrình f(x)=0 có 3 nghiệm phân biệt Bài 2:Cho hình chóp SABCD ,ABCD là hình vuông tâm O cạnh a;SA=SB=SC=SD=. Gọi I và J là trung điểm BC và AD 1/CMR: SO (ABCD) 2/CMR: (SIJ) (ABCD).Xác định góc giữa (SIJ) và (SBC) 3/Tính khoảng cách từ O đến (SBC) B.Tự chọn: Bài 3: Cho f(x)=(3-x2)10.Tính f’’(x) Bài 4: Cho f(x)=.Tính f’’() với sai số tuyệt đối không vượt quá 0,01. ĐỀ 9: A. Bắt buộc: Bài 1: 1/Tính giới hạn: a/ b/ c/ . 2/ cho y=f(x)= x3 - 3x2 +2. Chứng minh rằng f(x)=0 có 3 nghiệm phân biệt. 3/ Cho f(x)=. Tìm A để hàm số liên tục tại x=2. Bài 2: Cho y . Giải bất phương trình y’.y <2x2 -1. Bài 3: Cho tứ diện OABC. Có OA=OB=OC =a , . a/ CMR: ABC là tam giác vuông. b/ CM: OA vuông góc BC. c/ Gọi I, J là trung điểm OA và BC. Chứng minh IJ là đoạn vuông góc chung OA vàw BC. B. Tự chọn: Bài 4: Cho f(x)= x3 – 3x2 +2. Viết phương trình tiếp tuyến của đồ thị hàm số f(x) biết tiếp tuyến song song với d: y = 3x + 2008. Bài 5: cho f (x) = ĐỀ 10: PHẦN BẮT BUỘC: CÂU 1: Tính các giới hạn sau : CÀU 2: a) Cmr phương trình sau có ít nhất 2 nghiệm : b) Xét tính liên tục của hàm số trên tập xác định . CÂU 3: a) Viết phương trình tiếp tuyến của đồ thi hàm số y = x3 tại điểm có hoành độ là -1 . b) Tính đạo hàm CÂU 4: Cho hình chóp S.ABCD có SA vuông góc (ABCD) và ABCD là hình thang vuông tại A,B . AB=BC=a , . Cmr các mặt bên là các tam giác vuông. Tính góc giữa (SBC) và (ABCD) Tính khoảng cách giữa AD và SC PHẦN TỰ CHỌN: 1.BAN CƠ BẢN: CÂU 1: Tính CÀU 2: Cho y = x3- 3x2 + 2 .Tìm x để y’< 3 CÂU 3: Cho hình hộp ABCD.EFGH có . Gọi I là trung điểm của đoạn BG. Hãy biểu thị vectơ qua ba vectơ 2.BAN NÂNG CAO: CÂU 1: a) Tính gần đúng giá trị b) Tính vi phân của CÀU 2: Tính CÂU 3: Cho tứ diện đều cạnh a . Tính khoảng cách giữa hai cạnh đối của tứ diện . ĐỀ 11: PHẦN BẮT BUỘC : CÂU 1: a)Tính b) Chứng minh phương trình x3 - 3x + 1 = 0 có 3 nghiệm phân biệt . CÀU 2: a) Tính đạo hàm của các hàm số sau: b) Tính đạo hàm cấp hai của hàm số c) Tính vi phân của ham số y = sinx . cosx CÂU 3: Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a . và . Chứng minh : . Tính d(A,(SBD)) Tính góc giữa SC và (ABCD) PHẦN TỰ CHỌN: 1.BAN CƠ BẢN: CÂU 1: Viết phương trình tiếp tuyến của hàm số tại giao điểm của nó với trục hoành . CÀU 2: Cho hàm số , giải phương trình f’(x) = 0 CÂU 3: Cho hình lập phương ABCD.EFGH có cạnh a . Tính 2.BAN NÂNG CAO: CÂU 1: Tính vi phân và đạo hàm cấp hai của hàm số y = sin2x .cos2x CÀU 2: Cho . Với giá trị nào của x thì y’(x) = -2 CÂU 3: Cho hình lập phương ABCD.A’B’C’D’ có cạnh a . Xác định đường vuông góc chung và tính khoảng cách của hai đường thẳng chéo nhau BD’ và B’C ĐỀ 12: Bài 1: Tính giới hạn: Bài 2: Chứng minh phương trình có 3 nghiệm thuộc . Bài 3: Chứng minh hàm số sau không có đạo hàm tại Bài 4: Tính đạo hàm các hàm số sau: Bài 5: Cho hàm số có đồ thị (H). Viết phương trình tiếp tuyến của (H) tại A(2;3). Viết phương trình tiếp tuyến của (H) biết tiếp tuyến với đường thẳng . Bài 6: Cho hình chóp S.ABCD, ABCD là hình vuông cạnh a, SA=a, SA vuông góc với (ABCD). Gọi I, K là hình chiếu vuông góc của A lên SB, SD. Chứng minh: Các mặt bên hình chóp là các tam giác vuông. Chứng minh: (SAC) vuông góc (AIK). Tính góc giữa SC và (SAB). Tính khoảng cách từ A đến (SBD). ĐỀ 13: Bài 1: Tính giới hạn: Bài 2: Chứng minh phương trình có nghiệm với mọi m. Bài 3: Tìm a để hàm số liên tục tại x=1. Bài 4: Tính đạo hàm của các hàm số: Bài 5: Cho đường cong (C). Viết phương trình tiếp tuyến của (C): Tại điểm có hoành độ bằng 2. Biết tiếp tuyến vuông góc đường thẳng . Bài 6: Cho hình chóp S.ABCD, ABCD là hình thoi tâm O cạnh a, Chứng minh: vuông và SC vuông góc SC vuông góc BD. Chứng minh: Tính khoảng cách giữa SA và BD. ĐỀ 14: Bài 1: Tính giới hạn: Bài 2: Chứng minh rằng phương trình có ít nhất hai nghiệm. Bài 3: Tìm m để hàm số sau liên tục tại x = 2 Bài 4: Tính đạo hàm của các hàm số sau: Bài 5: Viết phương trình tiếp tuyến của đồ thị hàm số: Tại điểm có tung độ bằng . Biết tiếp tuyến song song với đường thẳng . Bài 6: Cho tứ diện S.ABC có đều cạnh a,. Gọi I là trung điểm BC. Chứng minh: (SBC) vuông góc (SAI). Tính khoảng cách từ A đến (SBC). Tính góc giữa (SBC) và (ABC). ĐỀ 15: Bài 1: Tính giới hạn: Bài 2: Chứng minh rằng phương trình có nghiệm thuộc . Bài 3: Xét tính liên tục của hàm số: Bài 4: Tính đạo hàm của các hàm số sau: Bài 5: Viết phương trình tiếp tuyến của đồ thị hàm số: Tại giao điểm của đồ thị và trục tung. Biết tiếp tuyến song song với đường thẳng . Bài 6: Cho hình chóp S.ABCD, ABCD là hình thoi tâm O cạnh a, . Gọi E lần lượt là trung điểm BC, F lần lượt là trung điểm BE. Chứng minh: (SOF) vuông góc (SBC). Tính khoảng cách từ O và A đến (SBC). Gọi () là mặt phẳng qua AD và vuông góc (SBC). Xác định thiết diện hình chóp với (). Tính góc giữa () và (ABCD). ĐỀ 16: I/.phần chung( 7- điểm ) Bài 1(2đ) Câu 1:Tìm a) c) Câu 2: Cho hàm số : . Tính f ’(1) Bài 2 ( 3đ) Câu 1: Cho hàm số Hãy tìm a để liên tục tại x = 1 Câu 2. Cho Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1. Bài 3: (2 điểm ) Cho tứ diện ABCD có tam giác ABC là tam giác đều cạnh a ,AD vuông góc với BC , AD = a và khoảng cách từ điểm D đến đường thẳng BC là a . Gọi H là trung điểm BC, I là trung điểm AH. Chứng minh rằng đường thẳng BC vuông góc với mặt phẳng (ADH) và DH bằng a. Chứng minh rằng đường thẳng DI vuông góc với mặt phẳng (ABC). Tính khoảng cách giữa AD và BC. II/. Phần tự chọn (3đ) A.Dành cho chương trình chuẩn Bài 4 : a/ Tìm b/Tìm Bài 5: a/ CMR phương trình sau có 3 nghiệm phân biệt. 6x3 – 3x2 - 6x + 2 = 0 b/.Cho hình chóp tam giác đều có cạnh đáy và cạnh bên bằng a, Tính: Chiều cao hình chóp. B. Dành cho chương trình nâng cao Bài 4: Tìm Bài 5: a/ CMR phương trình sau luôn luôn có nghiệm ( m2 – 2m + 2) x3 + 3x – 3 = 0 b/ Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc (ABCD) và SA = . Gọi (P) là mặt phẳng chứa AB và vuông góc (SCD). Thiết diên cắt bởi (P) và hình chóp là hình gì? Tính diện tích thiết diện đó. ĐỀ 17 Phân chung: ( 7đ) Bài 1: (2đ) a/. Tìm b/ Tính đạo hàm của hàm số: Bài 2: (2đ) Câu 1: Cho hàm số: (C). Viết phương trình tiếp tuyến với (C) biết: tiếp tuyến song song với đường thẳng . Câu 2: Tìm a, b để hàm số: liên tục tại x = 2. Bài 3: (3đ) Cho hình chóp S.ABC có (SAB), (SAC) cùng vuông góc với (ABC), tam giác ABC vuông cân tại C. AC = a; SA = x. Xác định và tính góc giữa SB và (ABC), SB và (SAC). Chứng minh . Tính khoảng cách từ A đến (SBC). Tinh khoảng cách từ O đến (SBC). (O là trung điểm của AB). d) Xác định đường vuông góc chung của SB và AC II/.Phần tự chọn ( 3đ): A.Dành cho ban cơ bản Bài 4 Cho f(x) = x2 sin (x – 2) . Tìm f ‘ (2) Viết thêm 3 số vào giữa hai số và 8 để được câp số cộng có 5 số hạng, tính tổng các số hạng của cấp số cộng đó Bài 5 a. CMR phương trình sau có ít nhất 2 nghiệm: 2x3 - 10x = 7 b. Cho hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên hợp với đáy 1 góc 300. Tính chiều cao hình chóp. B. Dành cho ban nâng cao Bài 4: a. Cho f(x) = sin 2x – 2 sinx – 5, giải phương trình f ‘ (x) = 0 b. Cho 3 số a, b, c là 3 số hạng liên tiếp của cấp số nhân. CMR: (a2 + b2 )( b2 + c2) = (ab+bc)2 Bài 5: a.CMR: Với mọi m phương trình sau luôn có ít nhất 2 nghiệm : (m2 +1)x4 – x3 = 1 b.Cho hình lăng trụ tam giác đều ABC.A’B’C’ , có cạnh đáy bằng a, cạnh bên bằng Tính góc giữa 2 mặt phẳng (A’BC) và (ABC). Khoảng cách từ A đến (A’BC)

File đính kèm:

  • doc17 de thi thu HK 2 toan 11.doc