Buổi 5: Phân tích một số ra thừa số nguyên tố

A> MỤC TIÊU

- HS biết phân tích một số ra thừa số nguyên tố.

- Dựa vào việc phân tích ra thừa số nguyên tố, HS tìm được tập hợp của các ước của số cho trước

- Giới thiệu cho HS biết số hoàn chỉnh.

- Thông qua phân tích ra thừa số nguyên tổ để nhận biết một số có bao nhiêu ước, ứng dụng để giải một vài bài toán thực tế đơn giản.

- Rèn kỷ năng tìm ước chung và bội chung: Tìm giao của hai tập hợp.

- Biết tìm ƯCLN, BCNN của hai hay nhiều số bằng cách phân tích các số ra thừa số nguyên tố.

- Biết vận dụng ƯC, ƯCLN, BC, BCNN vào các bài toán thực tế đơn giản.

B> KIẾN THỨC

I. Ôn tập lý thuyết.

Câu 1: Thế nào là phân tích một số ra thừa số nguyên tố?

Câu 2: Hãy phân tích số 250 ra thừa số nguyên tố bằng 2 cách

Câu 3: Ước chung của hai hay nhiều số là gi? x ƯC(a; b) khi nào?

Câu 4: Bội chung nhỏ nhất của hai hay nhiều số là gi?

Câu 5: Nêu các bước tìm UCLL

Câu 6: Nêu các bước tìm BCNN

 

doc6 trang | Chia sẻ: luyenbuitvga | Lượt xem: 2796 | Lượt tải: 4download
Bạn đang xem nội dung tài liệu Buổi 5: Phân tích một số ra thừa số nguyên tố, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày Buổi 5 PHÂN TíCH MộT Số RA THừA Số NGUYÊN Tố A> MụC TIÊU - HS biết phân tích một số ra thừa số nguyên tố. - Dựa vào việc phân tích ra thừa số nguyên tố, HS tìm được tập hợp của các ước của số cho trước - Giới thiệu cho HS biết số hoàn chỉnh. Thông qua phân tích ra thừa số nguyên tổ để nhận biết một số có bao nhiêu ước, ứng dụng để giải một vài bài toán thực tế đơn giản. - Rèn kỷ năng tìm ước chung và bội chung: Tìm giao của hai tập hợp. - Biết tìm ƯCLN, BCNN của hai hay nhiều số bằng cách phân tích các số ra thừa số nguyên tố. - Biết vận dụng ƯC, ƯCLN, BC, BCNN vào các bài toán thực tế đơn giản. B> kiến thức I. Ôn tập lý thuyết. Câu 1: Thế nào là phân tích một số ra thừa số nguyên tố? Câu 2: Hãy phân tích số 250 ra thừa số nguyên tố bằng 2 cách Câu 3: Ước chung của hai hay nhiều số là gi? x ƯC(a; b) khi nào? Câu 4: Bội chung nhỏ nhất của hai hay nhiều số là gi? Câu 5: Nêu các bước tìm UCLL Câu 6: Nêu các bước tìm BCNN II. Bài tập Bài1: : Hãy phân tích các số sau ra thừa số nguyên tố:48,105;286: 48 2 105 3 286 2 24 2 35 5 143 11 12 2 7 7 13 13 6 2 1 1 3 3 1 Vậy 48 = 24.3 105 = 3.5.7 286 =2.11.13 Bài 2: Phân tích các số 120, 900, 100000 ra thừa số nguyên tố ĐS: 120 = 23. 3. 5; 900 = 22. 32. 52 100000 = 105 = 22.55 Bài 3: a.Tớch của 2 số tự nhiờn bằng75. tỡm hai số đú b.tớch của 2 số tự nhiờn a và b bằng 36. tỡm a và b biết a<b Giải: a.gọi 2 số tự nhiờn phải tỡm là: a và b ta cú:a.b =75 Phõn tớch 75 ra thừa số nguyờn tố: 75= 3.52 Vì a.b =75 nờn cỏc số a và b là ước của 75. Ta cú: a 1 3 5 15 25 75 b 75 25 15 5 3 1 Giả tương tự như cõu a với a<b. Đỏp số: aẻ {1;2;3;4}. B ẻ{36;1;2;9} Bài 3. Một số tự nhiên gọi là số hoàn chỉnh nếu tổng tất cả các ước của nó gấp hai lần số đó. Hãy nêu ra một vài số hoàn chỉnh. VD 6 là số hoàn chỉnh vì Ư(6) = {1; 2; 3; 6} và 1 + 2 + 3 + 6 = 12 Tương tự 48, 496 là số hoàn chỉnh. Bài 4: Học sinh lớp 6A được nhận phần thưởng của nhà trường và mỗi em được nhận phần thưởng như nhau. Cô hiệu trưởng đã chia hết 129 quyển vở và 215 bút chì màu. Hỏi số học sinh lớp 6A là bao nhiêu? Hướng dẫn Nếu gọi x là số HS của lớp 6A thì ta có: 129x và 215x Hay nói cách khác x là ước của 129 và ước của 215 Ta có 129 = 3. 43; 215 = 5. 43 Ư(129) = {1; 3; 43; 129} Ư(215) = {1; 5; 43; 215} Vậy x {1; 43}. Nhưng x không thể bằng 1. Vậy x = 43. *Dạng toỏn tỡm số ước của 1 số VD: - Ta có Ư(20) = {1, 2, 4, 5, 10, 20}. Số 20 có tất cả 6 ước. - Phân tích số 20 ra thừa số nguyên tố, ta được 20 = 22. 5 So sánh tích của (2 + 1). (1 + 1) với 6. Từ đó rút ra nhận xét gì? Bài 1: a/ Số tự nhiên khi phân tích ra thừa số nguyên tố có dạng 22 . 33. Hỏi số đó có bao nhiêu ước? b/ A = p1k. p2l. p3m có bao nhiêu ước? Hướng dẫn a/ Số đó có (2+1).(3+1) = 3. 4 = 12 (ước). b/ A = p1k. p2l. p3m có (k + 1).(l + 1).(m + 1) ước Ghi nhớ: Người ta chứng minh được rằng: Số các ước của một số tự nhiên a bằng một tích mà các thừa số là các số mũ của các thừa số nguyên tố của a cộng thêm 1 a = pkqm.. .rn Số phần tử của Ư(a) = (k+1)(m+1).. .(n+1) Bài 2: Hãy tìm số phần tử của Ư(252): ĐS: 18 phần tử. II. Bài tập Dạng 1: Bài 1: Viết các tập hợp a/ Ư(6), Ư(12), Ư(42) và ƯC(6, 12, 42) b/ B(6), B(12), B(42) và BC(6, 12, 42) ĐS: a/ Ư(6) = Ư(12) = Ư(42) = ƯC(6, 12, 42) = b/ B(6) = B(12) = B(42) = BC = Bài 2: Tìm ƯCLL của a/ 12, 80 và 56 b/ 144, 120 và 135 c/ 150 và 50 d/ 1800 và 90 Hướng dẫn a/ 12 = 22.3 80 = 24. 5 56 = 33.7 Vậy ƯCLN(12, 80, 56) = 22 = 4. b/ 144 = 24. 32 120 = 23. 3. 5 135 = 33. 5 Vậy ƯCLN (144, 120, 135) = 3. c/ ƯCLN(150,50) = 50 vì 150 chia hết cho 50. d/ ƯCLN(1800,90) = 90 vì 1800 chia hết cho 90. Bài 3: Tìm a/ BCNN (24, 10) b/ BCNN( 8, 12, 15) Hướng dẫn a/ 24 = 23. 3 ; 10 = 2. 5 BCNN (24, 10) = 23. 3. 5 = 120 b/ 8 = 23 ; 12 = 22. 3 ; 15 = 3.5 BCNN( 8, 12, 15) = 23. 3. 5 = 120 Dạng 2: Dùng thuật toán Ơclit để tìm ƯCLL (không cần phân tích chúng ra thừa số nguyên tố) 1/ GV giới thiệu Ơclit: Ơclit là nhà toán học thời cổ Hy Lạp, tác giả nhiều công trình khoa học. Ông sống vào thế kỷ thứ III trước CN. Cuốn sách giáo kha hình học của ông từ hơn 2000 nưam về trước bao gồm phần lớn những nội dung môn hình học phổ thông của thế giới ngày nay. 2/ Giới thiệu thuật toán Ơclit: Để tìm ƯCLN(a, b) ta thực hiện như sau: - Chia a cho b có số dư là r + Nếu r = 0 thì ƯCLN(a, b) = b. Việc tìm ƯCLN dừng lại. + Nếu r > 0, ta chia tiếp b cho r, được số dư r1 - Nếu r1 = 0 thì r1 = ƯCLN(a, b). Dừng lại việc tìm ƯCLN - Nếu r1 > 0 thì ta thực hiện phép chia r cho r1 và lập lại quá trình như trên. ƯCLN(a, b) là số dư khác 0 nhỏ nhất trong dãy phép chia nói trên. VD: Hãy tìm ƯCLN (1575, 343) Ta có: 1575 = 343. 4 + 203 343 = 203. 1 + 140 203 = 140. 1 + 63 140 = 63. 2 + 14 63 = 14.4 + 7 14 = 7.2 + 0 (chia hết) Vậy: Hãy tìm ƯCLN (1575, 343) = 7 1575 343 343 203 4 203 140 1 140 63 1 63 14 2 14 7 4 0 2 Trong thực hành người ta đặt phép chia đó như sau: Suy ra ƯCLN (1575, 343) = 7 Bài tập1: Tìm ƯCLN(702, 306) bằng cách phân tích ra thừa số nguyên tố và bằng thuật toán Ơclit. ĐS: 18 Bài tập 2: Dùng thuật toán Ơclit để tìm a/ ƯCLN(318, 214) b/ ƯCLN(6756, 2463) ĐS: a/ 2 b/ 1 (nghĩa là 6756 và 2463 là hai số nguyên tố cùng nhau). Dạng 2: Tìm ước chung thông qua ước chung lớn nhất Dạng 3: Các bài toán thực tế Bài 1: Một lớp học có 24 HS nam và 18 HS nữ. Có bao nhiêu cách chia tổ sao cho số nam và số nữ được chia đều vào các tổ? Hướng dẫn Số tổ là ước chung của 24 và 18 Tập hợp các ước của 18 là A = Tập hợp các ước của 24 là B = Tập hợp các ước chung của 18 và 24 là C = A B = Vậy có 3 cách chia tổ là 2 tổ hoặc 3 tổ hoặc 6 tổ. Bài 2: Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, hoặc 25 người, hoặc 30 người đều thừa 15 người. Nếu xếp mỗi hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài hàng). Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000? Hướng dẫnGọi số người của đơn vị bộ đội là x (xN) x : 20 dư 15 x – 15 20 x : 25 dư 15 x – 15 25 x : 30 dư 15 x – 15 30 Suy ra x – 15 là BC(20, 25, 35) Ta có 20 = 22. 5; 25 = 52 ; 30 = 2. 3. 5; BCNN(20, 25, 30) = 22. 52. 3 = 300 BC(20, 25, 35) = 300k (kN) x – 15 = 300k x = 300k + 15 mà x < 1000 nên 300k + 15 < 1000 300k < 985 k < (kN) Suy ra k = 1; 2; 3 Chỉ có k = 2 thì x = 300k + 15 = 615 41 Vậy đơn vị bộ đội có 615 người

File đính kèm:

  • docBuoi 5.doc
Giáo án liên quan