Bài 1.2 : Cho phương trình :
(m2 − 4)x2 + 2(m + 2)x + 1 = 0.
1. Tìm m để phương trình có hai nghiệm phân biệt.
2. Tìm m để phương trình có nghiệm duy nhất.
Bài 1.3 : Gọi a, b, c là độ dài ba cạnh của một tam giác. Chứng minh phương trình sau vô nghiệm :
c2x2 + (a2 − b2 − c2)x + b2 = 0.
Bài 1.4 : Cho phương trình :
x2 − (2m + 3)x + m2 + 2m + 2 = 0.
1. Tìm m để phương trình có hai nghiệm x1, x2.
2. Viết phương trình bậc hai có hai nghiệm 1
Tìm hệ thức giữa x1, x2 độc lập với tham số m.
4. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x1 = 2x2
283 trang |
Chia sẻ: trangtt2 | Ngày: 06/07/2022 | Lượt xem: 323 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Các Chuyên đề luyện thi Đại học môn Toán, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRẦN ANH TUẤN
TRƯỜNG ĐẠI HỌC THƯƠNGMẠI
Các chuyên đề
LUYỆN THI ĐẠI HỌC
HÀ NỘI - 2011
Mục lục
I Đại số - Lượng giác - Giải tích 9
Chương 1 Phương trình, bất phương trình, hệ đại số 11
1.1. Phương trình, bất phương trình đa thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1. Phương trình, bất phương trình bậc hai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2. Phương trình trình bậc ba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3. Phương trình, bất phương trình bậc bốn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2. Phương trình, bất phương trình chứa giá trị tuyệt đối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3. Phương trình, bất phương trình chứa căn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Vấn đề 1 : Phương trình, bất phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Vấn đề 2 : Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Vấn đề 3 : Phương pháp nhân liên hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Vấn đề 4 : Phương pháp đánh giá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Vấn đề 5 : Phương trình, bất phương trình có tham số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4. Hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1. Phương pháp thế . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2. Phương pháp phân tích thành nhân tử hoặc coi một phương trình là phương trình bậc hai (ba) theo
một ẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3. Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.4. Phương pháp hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.5. Phương pháp đánh giá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5. Số nghiệm của phương trình, hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Vấn đề 1 : Chứng minh phương trình có nghiệm duy nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Vấn đề 2 : Chứng minh phương trình có đúng hai nghiệm phân biệt . . . . . . . . . . . . . . . . . . . . . . 28
Vấn đề 3 : Chứng minh phương trình có đúng ba nghiệm phân biệt . . . . . . . . . . . . . . . . . . . . . . 29
1.6. Phương trình, bất phương trình, hệ đại số trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . 29
1.7. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Chương 2 Bất đẳng thức 37
2.1. Phương pháp sử dụng bất đẳng thức Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.1. Bất đẳng thức Cauchy - So sánh giữa tổng và tích . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2. Một số hệ quả trực tiếp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3. Bài tập đề nghị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Bất đẳng thức hình học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3. Phương pháp sử dụng điều kiện có nghiệm của phương trình hoặc hệ phương trình . . . . . . . . . . . . . . 44
3
2.4. Bất đẳng thức trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chương 3 Lượng giác 51
3.1. Phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2. Phương trình dạng a sin x + b cos x = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3. Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4. Đưa phương trình về dạng tích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5. Phương pháp đánh giá và phương pháp hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6. Giá trị lớn nhất và nhỏ nhất của biểu thức lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7. Lượng giác trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chương 4 Tổ hợp 69
4.1. Các quy tắc đếm. Tổ hợp, chỉnh hợp, hoán vị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2. Giải phương trình, bất phương trình, hệ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3. Hệ số của xk trong khai triển . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4. Hệ số của xk trong khai triển nhị thức (a + b)n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5. Hệ số của xk trong khai triển (a + b)n(c + d)m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6. Hệ số của xk trong khai triển (a + b + c)n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7. Tính tổng các hệ số tổ hợp :
n
P
k=0
akCkn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8. Phương pháp cơ bản với ak chỉ là hàm số mũ theo biến k . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9. Phương pháp đạo hàm với ak là tích hàm số mũ và đa thức theo k . . . . . . . . . . . . . . . . . . . . . . . 78
4.10. Phương pháp tích phân với ak là tích hàm số mũ và phân thức theo k . . . . . . . . . . . . . . . . . . . . . 79
4.11. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Chương 5 Hàm số 83
5.1. Tính đơn điệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Vấn đề 1 : Xét chiều biến thiên của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Vấn đề 2 : Tìm điều kiện tham số để hàm số đơn điệu trên một miền . . . . . . . . . . . . . . . . . . . . . . 84
Vấn đề 3 : Giá trị lớn nhất, giá trị nhỏ nhất của hàm một biến số . . . . . . . . . . . . . . . . . . . . . . . 87
Vấn đề 4 : Sử dụng tính đơn điệu chứng minh bất đẳng thức . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Vấn đề 5 : Ứng dụng sự biến thiên vào việc giải phương trình, bất phương trình, hệ . . . . . . . . . . . . . 91
Vấn đề 6 : Ứng dụng sự biến thiên vào bài toán số nghiệm phương trình có tham số . . . . . . . . . . . . . 92
5.2. Cực trị của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Vấn đề 1 : Sử dụng dấu hiệu 1 và dấu hiệu 2 để xác định các điểm cực trị của hàm số . . . . . . . . . . . . 94
Vấn đề 2 : Điều kiện của tham số để hàm số đạt cực trị (cực đại hoặc cực tiểu) tại x = x0 hoặc đồ thị hàm
số đạt cực trị tại điểm (x0; y0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Vấn đề 3 : Tìm điều kiện để hàm số có cực trị và thỏa mãn một vài điều kiện . . . . . . . . . . . . . . . . . 95
5.3. Tiệm cận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Vấn đề 1 : Tìm tiệm cận của đồ thị hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Vấn đề 2 : Các bài toán về tiệm cận có tham số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4. Tâm đối xứng và trục đối xứng. Điểm thuộc đồ thị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Vấn đề 1 : Tâm đối xứng, trục đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Vấn đề 2 : Khoảng cách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5. Biện luận số nghiệm của phương trình, bất phương trình bằng phương pháp đồ thị . . . . . . . . . . . . . . 103
5.6. Bài toán về sự tương giao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.7. Sự tiếp xúc của hai đường cong và tiếp tuyến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Vấn đề 1 : Viết phương trình tiếp tuyến biết tiếp điểm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Vấn đề 2 : Hai đường cong tiếp xúc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Vấn đề 3 : Tiếp tuyến đi qua một điểm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Vấn đề 4 : Tiếp tuyến có hệ số góc cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.8. Hàm số trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.9. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Chương 6 Mũ và lôgarít 127
6.1. Hàm số mũ, hàm số lũy thừa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2. Hàm số logarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3. Phương trình mũ và logarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vấn đề 1 : Phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vấn đề 2 : Phương pháp logarit hai vế . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Vấn đề 3 : Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Vấn đề 4 : Phương pháp phân tích thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Vấn đề 5 : Phương pháp đánh giá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4. Bất phương trình mũ và logarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Vấn đề 1 : Bất phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Vấn đề 2 : Phương pháp đặt ẩn phụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Vấn đề 3 : Phương pháp phân tích thành nhân tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5. Hệ phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6. Phương trình mũ và lôgarit trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.7. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Chương 7 Tích phân 149
7.1. Các dạng toán cơ bản về nguyên hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Vấn đề 1 : Chứng minh một hàm số F(x) là một nguyên hàm của hàm số f (x) . . . . . . . . . . . . . . . . 149
Vấn đề 2 : Sử dụng bảng nguyên hàm cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Vấn đề 3 : Tìm hằng số C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Vấn đề 4 : Phương pháp nguyên hàm từng phần . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Vấn đề 5 : Phương pháp đổi biến số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2. Các dạng toán tích phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Vấn đề 1 : Sử dụng tích phân cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Vấn đề 2 : Tích phân hàm chứa dấu trị tuyệt đối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Vấn đề 3 : Phương pháp tích phân từng phần . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Vấn đề 4 : Phương pháp đổi biến số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Vấn đề 5 : Tích phân các hàm hữu tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Vấn đề 6 : Tích phân một số hàm đặc biệt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3. Ứng dụng tích phân để tính diện tích hình phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4. Ứng dụng tích phân tính thể tích vật thể tròn xoay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.5. Tích phân trong các kì thi ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.6. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Chương 8 Số phức 167
II Hình học 173
Chương 9 Phương pháp tọa độ trong trong mặt phẳng 175
9.1. Phương pháp tọa độ trong mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2. Phương trình của đường thẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.2.1. Các bài toán thiết lập phương trình đường thẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.2.2. Các bài toán liên quan đến việc sử dụng phương trình đường thẳng . . . . . . . . . . . . . . . . . . 176
9.2.3. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.3. Đường tròn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4. Đường elip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.5. Đường hypebol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.6. Đường parabol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.7. Phương pháp tọa độ trong mặt phẳng qua các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . 187
9.8. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Chương 10 Mở đầu về hình học không gian. Quan hệ song song 191
10.1. Đại cương về đường thẳng và mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Vấn đề 1 : Xác định giao tuyến của hai mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Vấn đề 2 : Xác định giao điểm của đường thẳng a và mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . 192
Vấn đề 3 : Phương pháp chứng minh ba điểm thẳng hàng và ba đường thẳng đồng quy . . . . . . . . . . . 193
Vấn đề 4 : Tìm thiết diện của hình chóp cắt bởi mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.2. Hai đường thẳng song song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Vấn đề 1 : Tìm giao tuyến của hai mặt phẳng (dùng quan hệ song song) . . . . . . . . . . . . . . . . . . . 195
Vấn đề 2 : Chứng minh hai đường thẳng song song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Vấn đề 3 : Chứng minh hai đường thẳng chéo nhau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.3. Đường thẳng và mặt phẳng song song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Vấn đề 1 : Chứng minh đường thẳng song song với mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . 197
Vấn đề 2 : Tìm giao tuyến của hai mặt phẳng. Dựng thiết diện song song với một đường thẳng . . . . . . . 197
Vấn đề 3 : Dựng một mặt phẳng chứa một đường thẳng và song song với đường thẳng khác
Xác định giao điểm của đường thẳng với mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.4. Hai mặt phẳng song song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Vấn đề 1 : Chứng minh hai mặt phẳng song song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Vấn đề 2 : Tìm giao tuyến của hai mặt phẳng
Thiết diện cắt bởi một mặt phẳng song song với một mặt phẳng cho trước . . . . . . . . . . . . . . 199
Chương 11 Vectơ trong không gian. Quan hệ vuông góc 201
11.1. Vectơ trong không gian. Sự đồng phẳng của các vectơ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Vấn đề 1 : Biểu thị một vectơ qua ba vectơ không đồng phẳng . . . . . . . . . . . . . . . . . . . . . . . . . 202
Vấn đề 2 : Chứng minh các đẳng thức vectơ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Vấn đề 3 : Chứng minh các điểm thẳng hàng và quan hệ song song . . . . . . . . . . . . . . . . . . . . . . 203
Vấn đề 4 : Chứng minh các vectơ đồng phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.2. Hai đường thẳng vuông góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Vấn đề 1 : Tính góc giữa hai vectơ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Vấn đề 2 : Tính góc giữa hai đường thẳng a và b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Vấn đề 3 : Chứng minh hai đường thẳng vuông góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.3. Đường thẳng vuông góc với mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Vấn đề 1 : Chứng minh đường thẳng a vuông góc với mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . 207
Vấn đề 2 : Chứng minh hai đường thẳng vuông góc với nhau . . . . . . . . . . . . . . . . . . . . . . . . . 208
Vấn đề 3 : Xác định góc giữa đường thẳng a và mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . . . . 210
Vấn đề 4 : Dựng mặt phẳng qua điểm M cho trước và vuông góc với một đường thẳng d cho trước . . . . . 211
11.4. Hai mặt phẳng vuông góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Vấn đề 1 : Xác định góc giữa hai mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Vấn đề 2 : Chứng minh hai mặt phẳng (P) và (Q) vuông góc . . . . . . . . . . . . . . . . . . . . . . . . . 214
Vấn đề 3 : Chứng minh đường thẳng a vuông góc với mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . 215
Vấn đề 4 : Dựng mặt phẳng (Q) chứa a và vuông góc với (P) (giả thiết a không vuông góc với (P)) . . . . . 216
11.5. Khoảng cách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Vấn đề 1 : Tính khoảng cách từ điểm M đến đường thẳng ∆ cho trước . . . . . . . . . . . . . . . . . . . . 217
Vấn đề 2 : Dựng đường thẳng đi qua một điểm A cho trước và vuông góc với một mặt phẳng (P) cho trước.
Khoảng cách từ điểm A đến mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Vấn đề 3 : Đoạn vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau . . . . . . . . . . . . . 219
11.6. Khối đa diện và thể tích khối đa diện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Vấn đề 1 : Phương pháp trực tiếp tìm thể tích khối chóp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Vấn đề 2 : Tính thể tích hình chóp một cách gián tiếp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Vấn đề 3 : Dùng công thức thể tích để giải một số bài toán hình học . . . . . . . . . . . . . . . . . . . . . 228
11.7. Phân loại một số hình khối đa diện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.7.1. Hình chóp có cạnh bên vuông góc với đáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.7.2. Hình chóp đều . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.7.3. Hình chóp có mặt bên vuông góc với đáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.7.4. Hình chóp có hai mặt vuông góc với đáy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.7.5. Hình chóp có các cạnh bên bằng nhau hoặc các cạnh bên cùng tạo với đáy những góc bằng nhau . . 233
11.7.6. Hình hộp - Hình lăng trụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.8. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Chương 12 Mặt cầu và khối tròn xoay 239
12.1. Mặt cầu, khối cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
12.2. Mặt tròn xoay. Mặt trụ, hình trụ và khối trụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Chương 13 Phương pháp không gian toạ độ trong không gian 249
13.1. Hệ toạ độ trong không gian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Vấn đề 1 : Tìm tọa độ của một vectơ và các yếu tố liên quan đến vectơ thỏa mãn một số điều kiện cho trước . 249
Vấn đề 2 : Ứng dụng của tích vô hướng và tích có hướng . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Vấn đề 3 : Lập phương trình của mặt cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Vấn đề 4 : Phương pháp tọa độ giải hình học không gian . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.2. Phương trình mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Vấn đề 1 : Viết phương trình mặt phẳng đi qua một điểm và có một vectơ pháp tuyến cho trước . . . . . . . 254
Vấn đề 2 : Vị trí tương đối của hai mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Vấn đề 3 : Khoảng cách từ một điểm đến mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Vấn đề 4 : Góc giữa hai mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Vấn đề 5 : Vị trí tương đối giữa mặt phẳng và mặt cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
13.3. Phương trình đường thẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Vấn đề 1 : Phương trình tham số và phương trình chính tắc của đường thẳng . . . . . . . . . . . . . . . . . 260
Vấn đề 2 : Tìm điểm trên đường thẳng thỏa mãn điều kiện cho trước . . . . . . . . . . . . . . . . . . . . . 260
Vấn đề 3 : Vị trí tương đối của hai đường thẳng ∆ và ∆′ trong không gian . . . . . . . . . . . . . . . . . . 261
Vấn đề 4 : Vị trí tương đối giữa đường thẳng ∆ và mặt phẳng (P) . . . . . . . . . . . . . . . . . . . . . . . 262
Vấn đề 5 : Khoảng cách từ một điểm đến đường thẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Vấn đề 6 : Vị trí tương đối giữa đường thẳng và mặt cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Vấn đề 7 : Góc giữa hai đường thẳng ; góc giữa đường thẳng và mặt phẳng . . . . . . . . . . . . . . . . . 266
Vấn đề 8 : Phương trình đường thẳng biết đường thẳng đó song song, hoặc vuông góc với đường thẳng
hoặc mặt phẳng khác, hoặc nằm trên mặt phẳng khác . . . . . . . . . . . . . . . . . . . . . . . . . 267
Vấn đề 9 : Phương trình đường thẳng ∆ biết ∆ cắt ∆′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Vấn đề 10 : Hình chiếu và tính đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Vấn đề 11 : Bài toán cực trị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.4. Hình học không gian trong các kì thi tuyển sinh ĐH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
13.5. Bài tập tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
III Hướng dẫn và đáp số 287
8
Phần I
Đại số - Lượng giác - Giải tích
9
www.VNMATH.com www.VNMATH.com
Chương 1
Phương trình, bất phương trình, hệ đại số
1.1 Phương trình, bất phương trình đa thức
1.1.1 Phương trình, bất phương trình bậc hai
Bài 1.1 : Giải và biện luận các phương trình sau :
1. (m − 2)x2 − 2mx + m + 1 = 0 ; 2. a
x − 1 +
1
x − a = 2.
Bài 1.2 : Cho phương trình :
(m2 − 4)x2 + 2(m + 2)x + 1 = 0.
1. Tìm m để phương trình có hai nghiệm phân biệt.
2. Tìm m để phương trình có nghiệm duy nhất.
Bài 1.3 : Gọi a, b, c là độ dài ba cạnh của một tam giác. Chứng minh phương trình sau vô nghiệm :
c2x2 + (a2 − b2 − c2)x + b2 = 0.
Bài 1
File đính kèm:
- cac_chuyen_de_luyen_thi_dai_hoc_mon_toan.pdf