PHƯƠNG PHÁP:
- Phân tích đa thức tử và mẫu thành nhân tử;
- Tìm ĐKXĐ (Nếu bài toán chưa cho ĐKXĐ)
- Rút gọn từng phân thức(nếu được)
- Thực hiện các phép biến đổi đồng nhất như:
+ Quy đồng(đối với phép cộng trừ) ; nhân ,chia.
+ Bỏ ngoặc: bằng cách nhân đơn ; đa thức hoặc dùng hằng đẳng thức
+ Thu gọn: cộng, trừ các hạng tử đồng dạng.
+ Phân tích thành nhân tử – rút gọn
CHÚ Ý: - Trong mỗi bài toán rút gọn thường có các câu thuộc các loại toán: Tính giá trị biểu thức; giải phương trình; bất phương trình; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị nhỏ nhất ,lớn nhất Do vậy ta phải áp dụng các phương pháp giải tương ứng, thích hợp cho từng loại bài.
37 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1035 | Lượt tải: 3
Bạn đang xem trước 20 trang mẫu tài liệu Các dạng Toán ôn thi vào lớp 10, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Dạng I: rút gọn biểu thức
Có chứa căn thức bậc hai
I/ Biểu thức số học
Phương pháp:
Dùng các phương pháp biến đổi căn thức(đưa ra ; đưa vào; ;khử; trục; cộng,trừ căn thức đồng dạng; rút gọn phân số) để rút gọn biểu thức.
Bài tập: Thực hiện phép tính:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8)
9) ;
10) ;
11) ;
-------------
12) ;
13) ;
14) ;
15) ;
16) ;
17) ;
18) ;
19)
20) .
II/ Biểu thức đại số:
Phương pháp:
Phân tích đa thức tử và mẫu thành nhân tử;
Tìm ĐKXĐ (Nếu bài toán chưa cho ĐKXĐ)
Rút gọn từng phân thức(nếu được)
Thực hiện các phép biến đổi đồng nhất như:
+ Quy đồng(đối với phép cộng trừ) ; nhân ,chia.
+ Bỏ ngoặc: bằng cách nhân đơn ; đa thức hoặc dùng hằng đẳng thức
+ Thu gọn: cộng, trừ các hạng tử đồng dạng.
+ Phân tích thành nhân tử – rút gọn
Chú ý: - Trong mỗi bài toán rút gọn thường có các câu thuộc các loại toán: Tính giá trị biểu thức; giải phương trình; bất phương trình; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị nhỏ nhất ,lớn nhấtDo vậy ta phải áp dụng các phương pháp giải tương ứng, thích hợp cho từng loại bài.
ví dụ: Cho biểu thức:
a/ Rút gọn P.
b/ Tìm giá trị của a để biểu thức P có giá trị nguyên.
Giải: a/ Rút gọn P:
- Phân tích:
- ĐKXĐ:
- Quy đồng:
- Rút gọn:
b/ Tìm giá trị của a để P có giá trị nguyên:
- Chia tử cho mẫu ta được: .
- Lý luận: P nguyên nguyên là ước của 1 là.
Vậy với a = 1 thì biểu thức P có giá trị nguyên.
Bài tập:
Bài 1: Cho biểu thức
Rút gọn biểu thức A;
Tìm giá trị của x để A > - 6.
Bài 2: Cho biểu thức
Rút gọn biểu thức B;
Tìm giá trị của x để A > 0.
Bài 3: Cho biểu thức
Rút gọn biểu thức C;
Tìm giá trị của x để C < 1.
Bài 4: Rút gọn biểu thức :
Bài5: Cho các biểu thức: và
Rút gọn biểu thức P và Q;
Tìm giá trị của x để P = Q.
Bài 6: Cho biểu thức:
Rút gọn biểu thức P
So sánh P với 5.
Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức chỉ nhận đúng một giá trị nguyên.
Bài 7: Cho biểu thức:
Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
Tìm các số tự nhiên x để là số tự nhiên;
Tính giá trị của P với x = 4 – 2.
Bài 8: Cho biểu thức :
Rút gọn biểu thức P;
Tìm x để
Bài 9: Cho biểu thức :
P =
Rút gọn P
Tìm a để P<
Bài 10: Cho biểu thức:
P =
Rút gọn P
Tìm x để P <
Tìm giá trị nhỏ nhất của P
Bài 11: Cho biểu thức :
P =
Rút gọn P
Tìm giá trị của x để P<1
Bài 12: Cho biểu thức :
P =
Rút gọn P
Tìm các giá trị của x để P=
Chứng minh P
Bài 13: Cho biểu thức:
P = với m > 0
Rút gọn P
Tính x theo m để P = 0.
Xác định các giá trị của m để x tìm được ở câu b thoả mãn điều kiện x >1
Bài 14: Cho biểu thức :
P =
Rút gọn P
Tìm a để P = 2
Tìm giá trị nhỏ nhất của P ?
Bài 15: Cho biểu thức
P =
Rút gọn P
Tính giá trị của P nếu a = và b =
Tìm giá trị nhỏ nhất của P nếu
Bài 16: Cho biểu thức :
P =
Rút gọn P
Với giá trị nào của a thì P = 7
Với giá trị nào của a thì P > 6
Bài 17: Cho biểu thức:
P =
Rút gọn P
Tìm các giá trị của a để P < 0
Tìm các giá trị của a để P = -2
Bài 18: Cho biểu thức:
P =
Tìm điều kiện để P có nghĩa.
Rút gọn P
Tính giá trị của P khi a = và b =
Bài 19: Cho biểu thức :
P =
Rút gọn P
Chứng minh rằng P > 0 x
Bài 20: Cho biểu thức :
P =
Rút gọn P
Tính khi x =
Bài 21: Cho biểu thức:
P =
Rút gọn P
Tìm giá trị của x để P = 20
Bài 22: Cho biểu thức :
P =
Rút gọn P
Chứng minh P
Bài 23: Cho biểu thức :
P =
Rút gọn P
Tính P khi a =16 và b = 4
Bài 24: Cho biểu thức:
P =
Rút gọn P
Cho P = tìm giá trị của a
Chứng minh rằng P >
Bài 25: Cho biểu thức:
P =
Rút gọn P
Với giá trị nào của x thì P < 1
Bài 26: Cho biểu thức:
P =
Rút gọn P
Tìm những giá trị nguyên của a để P có giá trị nguyên
Bài 27: Cho biểu thức:
P =
Rút gọn P
Tìm giá trị của a để P >
Bài 28: Cho biểu thức:
P =
Rút gọn P
Cho x.y=16. Xác định x,y để P có giá trị nhỏ nhất
Bài 29: Cho biểu thức :
P =
Rút gọn P
Tìm tất cả các số nguyên dương x để y=625 và P<0,2
Bài 30: Cho biểu thức:
P =
Rút gọn P
So sánh P với 3
Dạng ii:
đồ thị
và tương quan giữa chúng
I/.Điểm thuộc đường – đường đi qua điểm.
Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x) ⟺ yA = f(xA).
Vớ dụ 1: Tỡm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nú đi qua điểm A(2;4)
Giải:
Do đồ thị hàm số đi qua điểm A(2;4) nờn: 4 = a.22 ⟺ a = 1
Vớ dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) cú phương trỡnh:
y = -2(x + 1). Đường thẳng (d) cú đi qua A khụng?
Giải:
Ta thấy -2.(-2 + 1) = 2 nờn điểm A thuộc v ào đường thẳng (d)
II.Cỏch tỡm giao điểm của hai đường y = f(x) và y = g(x).
Bước 1: Hoành độ giao điểm là nghiệm của phương trỡnh f(x) = g(x) (*)
Bước 2: Lấy nghiệm đú thay vào 1 trong hai cụng thức y = f(x) hoặc y = g(x) để tỡm tung độ giao điểm.
Chỳ ý: Số nghiệm của phương trỡnh (*) là số giao điểm của hai đường trờn.
III.Quan hệ giữa hai đường thẳng.
Xột hai đường thẳng : (d1) : y = a1x + b1. và (d2) : y = a2x + b2.
(d1) cắt (d2) ⟺ a1 ≠ a2.
d1) // (d2) ⟺ a1=a2b1≠b2
d1) ≡ (d2) ⟺ a1=a2b1=b2
(d1) ⊥ (d2) ⟺ a1.a2 = -1
IV.Tỡm điều kiện để 3 đường thẳng đồng qui.
Bước 1: Giải hệ phương trỡnh gồm hai đường thẳng khụng chứa tham số để tỡm (x;y).
Bước 2: Thay (x;y) vừa tỡm được vào phương trỡnh cũn lại để tỡm ra tham số .
V.Quan hệ giữa (d): y = ax + b và (P): y = a’x2 (a’≠0).
1.Tỡm tọa độ giao điểm của (d) và (P).
Bước 1: Tỡm hoành độ giao điểm là nghiệm của phương trỡnh:
a’x2 = ax + b (#) a’x2- ax – b = 0
Bước 2: Lấy nghiệm đú thay vào 1 trong hai cụng thức y = ax +b hoặc y = ax2 để tỡm tung độ giao điểm.
Chỳ ý: Số nghiệm của phương trỡnh (#) là số giao điểm của (d) và (P).
2.Tỡm điều kiện để (d) và (P) cắt;tiếp xúc; không cắt nhau:
Từ phương trình (#) ta có:
a) (d) và (P) cắt nhau ⟺ phương trỡnh (#) cú hai nghiệm phõn biệt
b) (d) và (P) tiếp xỳc với nhau ⟺ phương trỡnh (#) cú nghiệm kộp
c) (d) và (P) khụng giao nhau ⟺ phương trỡnh (#) vụ nghiệm
VI.Viết phương trỡnh đường thẳng y = ax + b :
1.Biết quan hệ về hệ số gúc(//hay vuông góc) và đi qua điểm A(x0;y0)
Bước 1: Dựa vào quan hệ song song hay vuụng gúc để tỡm hệ số a.
Bước 2: Thay a vừa tỡm được và x0;y0 vào cụng thức y = ax + b để tỡm b.
2.Biết đồ thị hàm số đi qua điểm A(x1;y1) và B(x2;y2).
Do đồ thị hàm số đi qua điểm A(x1;y1) và B(x2;y2) nờn ta cú hệ phương trỡnh:
ax1+b=y1ax2+ b=y2
Giải hệ phương trỡnh tỡm a,b.
3.Biết đồ thị hàm số đi qua điểm A(x0;y0) và tiếp xỳc với (P): y = a’x2
+) Do đường thẳng đi qua điểm A(x0;y0) nờn cú phương trỡnh :
y0 = ax0 + b
+) Do đồ thị hàm số y = ax + b tiếp xỳc với (P): y = a’x2 nờn:
Pt: a’x2 = ax + b cú nghiệm kộp⟺Δ=0
+) Giải hệ để tỡm a,b.
VII.Chứng minh đường thẳng luụn đi qua 1 điểm cố định ( giả sử tham số là m).
+) Giả sử A(x0;y0) là điểm cố định mà đường thẳng luụn đi qua với mọi m, thay x0;y0 vào phương trỡnh đường thẳng chuyển về phương trỡnh ẩn m hệ số x0;y0 nghiệm đỳng với mọi m.
+) Đồng nhất hệ số của phương trỡnh trờn với 0 giải hệ tỡm ra x0;y0.
VIII.Tìm khoảng cách giữa hai điểm bất kỳ A; B
Gọi x1; x2 lần lượt là hoành độ của A và B; y1,y2 lần lượt là tung độ của A và B
Khi đó khoảng cách AB được tính bởi định lý Pi Ta Go trong tam giác vuông ABC:
IX. Một số ứng dụng của đồ thị hàm số:
1.Ứng dụng vào phương trỡnh.
2.Ứng dụng vào bài toỏn cực trị.
bài tập về hàm số.
Bài 1. cho parabol (p): y = 2x2.
1. tìm giá trị của a,b sao cho đường thẳng y = ax+b tiếp xúc với (p) và đi qua A(0;-2).
2. tìm phương trình đường thẳng tiếp xúc với (p) tại B(1;2).
3. Tìm giao điểm của (p) với đường thẳng y = 2m +1.
Bài 2: Cho (P) và đường thẳng (d): y = ax + b .
1. Xác định a và b để đường thẳng (d) đi qua điểm A(-1;0) và tiếp xúc với (P).
2. Tìm toạ độ tiếp điểm.
Bài 3: Cho (P) và đường thẳng (d) y = 2x + m
1. Vẽ (P)
2. Tìm m để (P) tiếp xúc (d)
3. Tìm toạ độ tiếp điểm.
Bài 4: Cho (P) và (d): y = x + m
1. Vẽ (P)
2. Xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt A và B
3. Xác định phương trình đường thẳng (d') song song với đường thẳng (d) và cắt (P) tại điẻm có tung độ bằng -4
4. Xác định phương trình đường thẳng (d'') vuông góc với (d') và đi qua giao điểm của (d') và (P)
Bài 5: Cho hàm số (P): và hàm số(d): y = x + m
1. Tìm m sao cho (P) và (d) cắt nhau tại hai điểm phân biệt A và B
2. Xác định phương trình đường thẳng (d') vuông góc với (d) và tiếp xúc với (P)
3. Tìm m sao cho khoảng cách giữa hai điểm A và B bằng
Bài 6: Cho điểm A(-2;2) và đường thẳng () y = -2(x+1)
1. Điểm A có thuộc () không ? Vì sao ?
2. Tìm a để hàm số (P): đi qua A
3. Xác định phương trình đường thẳng () đi qua A và vuông góc với ()
4. Gọi A và B là giao điểm của (P) và () ; C là giao điểm của () với trục tung . Tìm toạ độ của B và C . Tính chu vi tam giác ABC?
Bài 7: Cho (P) và đường thẳng (d) đi qua hai điểm A và B trên (P) có hoành độ lần lượt là
-2 và 4
1.Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên
2.Viết phương trình đường thẳng (d)
3.Tìm điểm M trên cung AB của (P) tương ứng hoành độ sao cho tam giác MAB có diện tích lớn nhất.
(Gợi ý: cung AB của (P) tương ứng hoành độ có nghĩa là A(-2;) và B(4;)ị tính ;SMAB có diện tích lớn nhấtM là tiếp điểm của đường thẳng (d1)với (P)và(d1)//(d).
Bài 8: Cho (P): và điểm M (1;-2)
1. Viết phương trình đường thẳng (d) đi qua M và có hệ số góc là m
HD: Phương trình có dạng:mà a = m. thay x = 1; y = -2 tính b = - m-2. vậy PT:
2. Chứng minh: (d) luôn cắt (P) tại hai điểm phân biệt A và B khi m thay đổi
3. Gọi lần lượt là hoành độ của A và B .Xác định m để đạt giá trị nhỏ nhất và tính giá trị đó?
Bài 9: Cho hàm số (P):
1. Vẽ (P)
2. Gọi A,B là hai điểm thuộc (P) có hoành độ lần lượt là -1 và 2. Viết ph. trình đường thẳng AB
3. Viết phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
Bài 10: Trong hệ toạ độ xOy cho Parabol (P) và đường thẳng (d):
1. Vẽ (P)
2. Tìm m sao cho (P) và (d) tiếp xúc nhau.Tìm toạ độ tiếp điểm
3. Chứng tỏ rằng (d) luôn đi qua một điểm cố định
Bài 11: Cho (P): và điểm I(0;-2). Gọi (d) là đường thẳng qua I và có hệ số góc m.
1. Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B với
2.Tìm giá trị của m để đoạn AB ngắn nhất
Bài 12: Cho (P): và đường thẳng (d) đi qua điểm I() có hệ số góc là m
1. Vẽ (P) và viết phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
Bài 13: Cho (P): và đường thẳng (d):
1. Vẽ (P) và (d)
2. Tìm toạ độ giao điểm của (P) và (d)
3. Tìm toạ độ của điểm thuộc (P) sao cho tại đó đường tiếp tuyến của (P) song song với (d)
Bài 14: Cho (P):
1.Gọi A và B là hai điểm thuộc (P) có hoành độ lần lượt là -1 và 2 . Viết ph. trình đường thẳng AB
2.Viết phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
Bài 14: Cho (P):
1.Vẽ (P)
2.Trên (P) lấy điểm A có hoành độ x = 1 và điểm B có hoành độ x = 2 . Xác định các giá trị của m và n để đường thẳng (d): y = mx + n tiếp xúc với (P) và song song với AB
Bài 15: Xác định giá trị của m để hai đường thẳng có phương trình cắt nhau tại một điểm trên (P) .
Dạng III:
Phương trình và Hệ phương trình
------------------------
A/ Phương trình bâc nhất một ẩn – giảI và biện luận:
+ Phương trình bậc nhất một ẩn có dạng
+ Giải và biện luận:
Nếu thì phương trình vô số nghiệm.
Nếu thì phương trình vô nghiệm.
Nếu thì phương trình có một nghiệm duy nhất
ví dụ: Giải và bịên luận phương trình sau:
Giải:
Biện luận: + Nếu thì phương trình có một nghiệm:
+ Nếu thì phương trình có dạng: nên phương trình vô số nghiệm.
+ Nếu thì phương trình có dạng: nên phương trình vô nghiệm.
Bài tập: Giải và biện luận các phương trình sau:
Bài 1.
Bài 2. HD: Quy đồng- thu gọn- đưa về dạng ax + b = 0
Bài 3. .
HD:
Nếu
Nếu thì phương trình vô số nghiệm.
b. hệ phương trình bậc nhất có hai ẩn số:
+ Dạng tổng quát:
+ Cách giải:
Phương pháp thế.
Phương pháp cộng đại số.
+ Số nghiệm số:
Nếu Thì hệ phương trình có một nghiệm .
Nếu Thì hệ phương trình có vô nghiệm .
Nếu Thì hệ phương trình có vô số nghiệm.
+ Tập nghiệm của mỗi phương trình biểu diễn trênmặt phẳng toạđộ là đồ thị hàm số dạng:
Ví dụ: Giải các HPT sau:
Bài1:
Giải:
+ Dùng PP thế:
Vaọy HPT đã cho có nghiệm là:
+ Dùng PP cộng:
Vaọy HPT đã cho có nghiệm là:
Bài2: Để giải loại HPT này ta thường sử dụng PP cộng cho thuận lợi.
Vaọy HPT có nghiệm là
Bài 3:
*Đối với HPT ở dạng này ta có thể sử dụng hai cách giải sau đây:
+ Cách 1: Sử dụng PP cộng. ĐK: .
Vaọy HPT có nghiệm là
+ Cách 2: Sử dụng PP đặt ẩn phụ. ĐK: .
Đặt ; . HPT đã cho trở thành: (TMĐK)
Vaọy HPT có nghiệm là
Lưu ý: - Nhiều em còn thiếu ĐK cho những HPT ở dạng này.
Có thể thử lại nghiệm của HPT vừa giải.
Bài tập về hệ phương trình:
Bài 1: Giaỷi caực heọ phửụng trỡnh sau (baống pp theỏ)
1.1:
1.2.
Bài 2: Giaỷi caực heọ phửụng trỡnh sau (baống pp coọng ủaùi soỏ)
2.1.
2.2.
Bài 3:
Giaỷi heọ phửụng trỡnh trong moói trửụứng hụùp sau
a) m = -1 b) m = 0 c) m = 1
Bài 4 a) Xaực ủũnh heọ soỏ avaứb, bieỏt raống heọ phửụng trỡnhcoự nghieọm laứ (1; -2)
b) Cuừng hoỷi nhử vaọy neỏu heọ phửụng trỡnh coự nghieọm
Bài 5: Giaỷi heọ phửụng trỡnh sau:
Tửứ ủoự suy ra nghieọm cuỷa heọ phửụng trỡnh
Bài 6: Cho hệ phương trình
Giải hệ khi a =3 ; b =-2
Tìm a;b để hệ có nghiệm là (x;y) = (
Bài 7: Giải các hệ phương trình sau: (pp đặt ẩn phụ)
7.1) 7.2) 7.3) (đk x;y2 )
7.4) ; 7.5) ; 7.6) .
7.7) ; 7.8) ;
7.9) ; 7.10) ; 7.11) ;
c.Phương trình bậc hai - hệ thức vi - ét
1.Cách giải phương trình bậc hai: ax2 + bx + c = 0 ( a 0)
* Nếu > 0 phương trình có hai nghiệm phân biệt:
x1 = ; x2 =
* Nếu = 0 phương trình có nghiệm kép: x1 = x2 =
* Nếu < 0 thì phương trình vô nghiệm
Chú ý: Trong trường hợp hệ số b là số chẵn thì giải phương trình trên bằng công thức nghiệm thu gọn:
b’= và ' =
* Nếu ' > 0 phương trình có hai nghiệm phân biệt
x1 = ; x2 =
* Nếu ' = 0 phương trình có nghiệm kép: x1 = x2 =
* Nếu ' < 0 thì phương trình vô nghiệm.
2.Định lý Vi ét: Nếu x1 , x2 là nghiệm của phương trỡnh ax2 + bx + c = 0 (a 0) thỡ
S = x1 + x2 = -
p = x1x2 =
Đảo lại: Nếu cú hai số x1,x2 mà x1 + x2 = S và x1x2 = p thì hai số đó là nghiệm (nếu có ) của phương trình bậc 2: x2 – S x + p = 0
3. Toán ứng dụng định lý Viét
I. Tính nhẩm nghiệm.
Xét phương trình bậc hai: ax2 + bx + c = 0 (a 0)
Nếu a + b + c = 0 thì phương trình có hai nghiệm x1 = 1 , x2 =
Nếu a – b + c = 0 thì phương trình có hai nghiệm x1 = -1 , x2 = -
Nếu x1 + x2 = m +n , x1x2 = mn và thì phương trình có nghiệm x1 = m , x2 = n
( hoặc x1 = n , x2 = m)
II. LẬP PHƯƠNG TRèNH BẬC HAI
1. Lập phương trỡnh bậc hai khi biết hai nghiệm
Vớ dụ : Cho ; lập một phương trỡnh bậc hai chứa hai nghiệm trờn
Theo hệ thức VI-ẫT ta cú vậy là nghiệm của phương trỡnh cú dạng:
Bài tập ỏp dụng:
1. x1 = 8 và x2 = -3
2. x1 = 3a và x2 = a
3. x1 = 36 và x2 = -104
4. x1 = và x2 =
2. Lập phương trỡnh bậc hai cú hai nghiệm thoả món biểu thức chứa hai nghiệm của một phương trỡnh cho trước:
V ớ dụ: Cho phương trỡnh : cú 2 nghiệm phõn biệt . Khụng giải phương trỡnh trờn, hóy lập phương trỡnh bậc 2 cú ẩn là y thoả món : và
Theo h ệ th ức VI- ẫT ta c ú:
Vậy phương trỡnh cần lập cú dạng:
hay
Bài tập ỏp dụng:
1/ Cho phương trỡnh cú 2 nghiệm phõn biệt . Khụng giải phương trỡnh, Hóy lập phương trỡnh bậc hai cú cỏc nghiệm và
(Đỏp số: hay )
2/ Cho phương trỡnh : cú 2 nghiệm . Hóy lập phương trỡnh bậc 2 cú ẩn y thoả món và (cú nghiệm là luỹ thừa bậc 4 của cỏc nghiệm của phương trỡnh đó cho).
(Đỏp số : )
3/ Cho phương trỡnh bậc hai: cú cỏc nghiệm . Hóy lập phương trỡnh bậc hai cú cỏc nghiệm sao cho :
a) và b) và
(Đỏp số a) b) )
III. TèM HAI SỐ BIẾT TổNG VÀ TÍCH CỦA CHÚNG
Nếu hai số cú Tổng bằng S và Tớch bằng P thỡ hai số đú là hai nghiệm của phương trỡnh :
(Điều kiện để cú hai số đú là S2 4P ³ 0 )
Vớ dụ : Tỡm hai số a, b biết tổng S = a + b = 3 và tớch P = ab = 4
Vỡ a + b = 3 và ab = 4 n ờn a, b là nghiệm của phương trỡnh :
giải phương trỡnh trờn ta được và
Vậy nếu a = 1 thỡ b = 4
nếu a = 4 thỡ b = 1
Bài tập ỏp dụng: Tỡm 2 số a và b biết Tổng S và Tớch P
1. S = 3 và P = 2
2. S = 3 và P = 6
3. S = 9 và P = 20
4. S = 2x và P = x2 y2
Bài tập nõng cao: Tỡm 2 số a và b biết
1. a + b = 9 và a2 + b2 = 41
2. a b = 5 và ab = 36
3. a2 + b2 = 61 v à ab = 30
Hướng dẫn: 1) Theo đề bài đó biết tổng của hai số a và b , vậy để ỏp dụng hệ thức VI- ẫT thỡ cần tỡm tớch của a v à b.
T ừ
Suy ra : a, b là nghiệm của phương trỡnh cú dạng :
Vậy: Nếu a = 4 thỡ b = 5
nếu a = 5 thỡ b = 4
2) Đó biết tớch: ab = 36 do đú cần tỡm tổng : a + b
Cỏch 1: Đ ặt c = b ta cú : a + c = 5 và a.c = 36
Suy ra a,c là nghiệm của phương trỡnh :
Do đú nếu a = 4 thỡ c = 9 nờn b = 9
nếu a = 9 thỡ c = 4 nờn b = 4
Cỏch 2: Từ
*) Với và ab = 36, nờn a, b là nghiệm của phương trỡnh :
Vậy a = thỡ b =
*) Với và ab = 36, nờn a, b là nghiệm của phương trỡnh :
Vậy a = 9 thỡ b = 4
3) Đó biết ab = 30, do đú cần tỡm a + b:
T ừ: a2 + b2 = 61
*) Nếu và ab = 30 thỡ a, b là hai nghiệm của phương trỡnh:
Vậy nếu a = thỡ b = ; nếu a = thỡ b =
*) Nếu và ab = 30 thỡ a, b là hai nghiệm của phương trỡnh :
Vậy nếu a = 5 thỡ b = 6 ; nếu a = 6 thỡ b = 5.
IV. Tìm điều kiện của tham số để phương trình bậc hai có một nghiệm x = x1 cho trước .Tìm nghiệm thứ 2
Cách giải:
Tìm điều kiện để phương trình có nghiệm x= x1 cho trước có hai cách làm:
+) Cách 1:- Lập điều kiện để phương trình bậc 2 đã cho có 2 nghiệm: (hoặc ) (*)
- Thay x = x1 vào phương trình đã cho ,tìm được giá trị của tham số
- Đối chiếu giá trị vừa tìm được của tham số với điều kiện(*) để kết luận
+) Cách 2: - Không cần lập điều kiện (hoặc ) mà ta thay luôn x = x1 vào phương trình đã cho, tìm được giá trị của tham số
- Sau đó thay giá trị tìm được của tham số vào phương trình và giải phương trình
Chú ý : Nếu sau khi thay giá trị của tham số vào phương trình , mà phương trình bậc hai này có
< 0 thì kết luận không có giá trị nào của tham số để phương trình có nghiệm x1 cho trước.
Để tìm nghiệm thứ 2 ta có 3 cách làm:
+) Cách 1: Thay giá trị của tham số tìm được vào phương trình rồi giải phương trình (như cách 2 trình bầy ở trên)
+) Cách 2 :Thay giá trị của tham số tìm được vào công thức tổng 2 nghiệm sẽ tìm được nghiệm thứ 2
+) Cách 3: thay giá trị của tham số tìm được vào công thức tích hai nghiệm,từ đó tìm được nghiệm thứ2
V. TÍNH GIÁ TRỊ CỦA CÁC BIỂU THỨC NGHIỆM
Đối cỏc bài toỏn dạng này điều quan trọng nhất là các em phải biết biến đổi biểu thức nghiệm đó cho về biểu thức cú chứa tổng nghiệm và tớch nghiệm để ỏp dụng hệ thức VI-ẫT rổi tớnh giỏ trị của biểu thức
1.Phương pháp: Biến đổi biểu thức để làm xuất hiện : () và
Dạng 1.
Dạng 2.
Dạng 3.
Dạng 4.
Dạng 5. Ta biết
Dạng 6. =
Dạng 7. = =.
Dạng 8. = =
Dạng 9. = = ..
Dạng 10.
Dạng 11. =
Dạng12: (x1 – a)( x2 – a) = x1x2 – a(x1 + x2) + a2 = p – aS + a2
Dạng13
2. Bài tập áp dụng: Khụng giải phương trỡnh, tớnh giỏ trị của biểu thức nghiệm
a) Cho phương trỡnh : Khụng giải phương trỡnh, hóy tớnh
1. (34) 2.
3. 4. (46)
b) Cho phương trỡnh : Khụng giải phương trỡnh, hóy tớnh:
1. 2.
c) Cho phương trỡnh : Khụng giải phương trỡnh, hóy tớnh:
1. 2. (138)
d) Cho phương trỡnh : Khụng giải phương trỡnh, hóy tớnh:
1. (3) 2. (1)
3. (1) 4.
5.
e) Cho phương trỡnh cú 2 nghiệm x1 ; x2 , khụng giải phương trỡnh, tớnh
HD:
VI. TèM HỆ THỨC LIấN HỆ GIỮA HAI NGHIỆM CỦA PHƯƠNG TRèNH SAO CHO HAI NGHIỆM NÀY KHễNG PHỤ THUỘC (HAY ĐỘC LẬP) VỚI THAM SỐ
Để làm cỏc bài toỏn loại này,các em làm lần lượt theo cỏc bước sau:
1- Đặt điều kiện cho tham số để phương trỡnh đó cho cú hai nghiệm x1 và x2
(thường là a ạ 0 và D ³ 0)
2- Áp dụng hệ thức VI-ẫT:
3- Sau đú dựa vào hệ thức VI-ẫT rỳt tham số theo tổng nghiệm, theo tớch nghiệm sau đú đồng nhất cỏc vế ta sẽ được một biểu thức chứa nghiệm khụng phụ thuộc vào tham số.Đó chính là hệ thức liờn hệ giữa cỏc nghiệm x1 và x2 không phụ thuộc vào tham số m.
Vớ dụ 1: Cho phương trỡnh : (1) cú 2 nghiệm . Lập hệ thức liờn hệ giữa sao cho chỳng khụng phụ thuộc vào m.
(Bài này đã cho PT có hai nghiệmx1 ;x2 nên ta không biện luận bước 1)
Giải:
Bước2: Theo hệ th ức VI- ẫT ta cú :
Bước2: Rỳt m từ (1) ta cú :
(3)
Rỳt m từ (2) ta cú :
(4)
Bước 3: Đồng nhất cỏc vế của (3) và (4) ta cú:
Vớ dụ 2: Gọi là nghiệm của phương trỡnh : . Chứng minh rằng biểu thức khụng phụ thuộc giỏ trị của m.
Theo hệ thức VI- ẫT ta c ú :
ĐK:() ;Thay vào A ta c ú:
Vậy A = 0 với mọi . Do đú biểu thức A khụng phụ thuộc vào m
1
Bài tập ỏp dụng:
1. Cho phương trỡnh : . Hóy lập hệ thức liờn hệ giữa sao cho độc lập đối với m.
Hướng dẫn:
B1: Dễ thấy . Do đú phương trỡnh đó cho luụn cú 2 nghiệm phõn biệt x1 và x2
B2: Theo hệ thức VI- ẫT ta cú
B3: Từ (1) và (2) ta cú:
2
Cho phương trỡnh : .
Tỡm hệ thức liờn hệ giữa và sao cho chỳng khụng phụ thuộc vào m.
Hướng dẫn: Dễ thấy do đú phương trỡnh đó cho luụn cú 2 nghiệm phõn biệt x1 và x2
Theo hệ thức VI- ẫT ta cú
Từ (1) và (2) ta cú:
VII.TèM GIÁ TRỊ THAM SỐ CỦA PHƯƠNG TRèNH THOẢ MÃN BIỂU THỨC CHỨA NGHIỆM ĐÃ CHO
Đối với cỏc bài toỏn dạng này các em làm như sau:
- Đặt điều kiện cho tham số để phương trỡnh đó cho cú hai nghiệm x1 và x2
(thường là a ạ 0 và D ³ 0)
- Từ biểu thức nghiệm đó cho, ỏp dụng hệ thức VI-ẫT để giải phương trỡnh (cú ẩn là tham số).
- Đối chiếu với điều kiện xỏc định của tham số để xỏc định giỏ trị cần tỡm.
Vớ dụ 1: Cho phương trỡnh :
Tỡm giỏ trị của tham số m để 2 nghiệm và thoả món hệ thức :
Bài giải: Điều kiện để phương trỡnh c ú 2 nghiệm x1 và x2 l à :
Theo h ệ th ức VI- ẫT ta c ú: và từ giả thiết: . Suy ra:
(thoả món điều kiện xỏc định )
Vậy với m = 7 thỡ phương trỡnh đó cho cú 2 nghiệm và thoả món hệ thức :
Vớ dụ 2: Cho phương trỡnh : .
Tỡm m để 2 nghiệm và thoả món hệ thức :
Bài giải: Điều kiện để phương trỡnh cú 2 nghiệm là :
Theo hệ thức VI-ẫT ta cú: và từ giả thiết . Suy ra
Vậy với m = 2 thỡ phương trỡnh cú 2 nghiệm và thoả món hệ thức :
Bài tập ỏp dụng
1. Cho phương trỡnh :
Tỡm m để 2 nghiệm và thoả món hệ thức :
2. Cho phương trỡnh :
Tỡm m để 2 nghiệm và thoả món hệ thức:
3. Cho phương trỡnh : .
Tỡm m để 2 nghiệm và thoả món hệ thức :
Hướng dẫn cỏch giải:
Đối với cỏc bài tập dạng này ta thấy cú một điều khỏc biệt so với bài tập ở Vớ dụ 1 và vớ dụ 2 ở chỗ:
+ Trong vớ dụ thỡ biểu thức nghiệm đó chứa sẵn tổng nghiệm và tớch nghiệm nờn ta cú thể vận dụng trực tiếp hệ thức VI-ẫT để tỡm tham số m.
+ Cũn trong 3 bài tập trờn thỡ cỏc biểu thức nghiệm lại khụng cho sẵn như vậy, do đú vấn đề đặt ra ở đõy là làm thế nào để từ biểu thức đó cho biến đổi về biểu thức cú chứa tổng nghiệm và tớch nghiệm rồi từ đú vận dụng tương tự cỏch làm đó trỡnh bày ở Vớ dụ 1 và vớ dụ 2.
BT1: - ĐKX Đ:
-Theo VI-ẫT:
- Từ Suy ra: (2)
- Thế (1) vào (2) ta đưa được về phương trỡnh sau:
BT2: - ĐKXĐ:
- Theo VI-ẫT:
- Từ : . Suy ra: (2)
- Thế (1) vào (2) ta cú phương trỡnh : (thoả món ĐKXĐ)
BT3: - Vỡ với mọi số thực m nờn phương trỡnh luụn cú 2 nghiệm phõn biệt.
- -Theo VI-ẫT:
- Từ giả thiết: . Suy ra: (2)
- Thế (1) vào (2) ta được phương trỡnh: (thoả món )
VIII. XÁC ĐỊNH DẤU CÁC NGHIỆM CỦA PHƯƠNG TRèNH BẬC HAI
Cho phương trỡnh: (a ạ 0) .Hóy tỡm điều kiện để phương trỡnh cú 2 nghiệm: trỏi dấu, cựng dấu, cựng dương, cựng õm .
Ta lập bảng xột dấu sau:
Dấu nghiệm
x1
x2
D
Điều kiện chung
trỏi dấu
P < 0
D ³ 0
D ³ 0 ; P < 0.
cựng dấu,
P > 0
D ³ 0
D ³ 0 ; P > 0
cựng dương,
+
+
S > 0
P > 0
D ³ 0
D ³ 0 ; P > 0 ; S > 0
cựng õm
S < 0
P > 0
D ³ 0
D ³ 0 ; P > 0 ; S < 0.
Vớ dụ: Xỏc định tham số m sao cho phương trỡnh:
cú 2 nghiệm trỏi dấu.
Để phương trỡnh cú 2 nghiệm trỏi dấu thỡ
Vậy với thỡ phương trỡnh cú 2 nghi ệm trỏi dấu.
Bài tập tham khảo:
1. cú 2 nghiệm cựng dấu.
2. cú 2 nghiệm õm.
3. cú ớt nhất một nghiệm khụng õm.
IX. TèM GIÁ TRỊ LỚN NHẤT HOẶC GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC NGHIỆM
Áp dụng tớnh chất sau về bất đẳng thức: trong mọi trường hợp nếu ta luụn phõn tớch được:
(trong đú A, B là cỏc biểu thức khụng õm ; m, k là hằng số) (*)
Thỡ ta thấy : (v ỡ )
(v ỡ)
Vớ dụ 1: Cho phương trỡnh :
Gọi và là cỏc nghiệm của phương trỡnh. Tỡm m để :
cú giỏ trị nhỏ nhất.
Bài giải: Theo VI-ẫT:
Theo đ ề b ài :
Suy ra:
Vớ dụ 2: Cho phương trỡnh :
Gọi và là cỏc nghiệm của phương trỡnh. Tỡm giỏ trị nhỏ nhất và giỏ trị lớn nhất của biểu thức sau:
Ta cú: Theo hệ thức VI-ẫT thỡ :
Cỏch 1: Thờm bớt để đưa về dạng như phần (*) đó hướng dẫn
Ta biến đổi B như sau:
Vỡ
Vậy m = 1
Với cỏch thờm bớt khỏc ta lại cú:
Vỡ
Vậy
Cỏch 2: Đưa về giải phương trỡnh bậc 2 với ẩn là m và B là tham số, ta sẽ tỡm điều kiện cho tham số B để phương trỡnh đó cho luụn cú nghiệm với mọi m.
(Với m là ẩn, B là tham số) (**)
Ta cú:
Để phương trỡnh (**) luụn cú nghiệm với mọi m thỡ D ³ 0
hay
Vậy: m = 1
Bài tập ỏp dụng
1. Cho phương trỡnh : .Tỡm m để biểu thức cú g
File đính kèm:
- CAC CHUYEN DE BD HS GIOI LOP 9.doc