Đề cương ôn tập học kì II môn toán khối 11

PHẦN HÌNH HỌC:

A. LÝ THUYẾT:

Các nội dung cần xem:

- Phương pháp chứng minh 2 mp song song.

- Phương pháp chứng minh 2 đường thẳng vuông góc.

- Phương pháp chứng minh đường thẳng vuông góc với mặt phẳng.

- Phương pháp chứng minh 2 mp vuông góc .

- Định lí 3 đường vuông góc.

- Góc giữa đường thẳng và mặt phẳng.

- Góc giữa 2 mặt phẳng.

- Hình chóp đều.

- Khoảng cách từ một điểm đến một mặt phẳng.

- Cách tìm đường vuông góc chung của 2 đường thẳng chéo nhau.

B. BÀI TẬP:

 

doc2 trang | Chia sẻ: oanh_nt | Lượt xem: 1213 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề cương ôn tập học kì II môn toán khối 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ II MÔN: TOÁN KHỐI 11 PHẦN HÌNH HỌC: LÝ THUYẾT: Các nội dung cần xem: Phương pháp chứng minh 2 mp song song. Phương pháp chứng minh 2 đường thẳng vuông góc. Phương pháp chứng minh đường thẳng vuông góc với mặt phẳng. Phương pháp chứng minh 2 mp vuông góc . Định lí 3 đường vuông góc. Góc giữa đường thẳng và mặt phẳng. Góc giữa 2 mặt phẳng. Hình chóp đều. Khoảng cách từ một điểm đến một mặt phẳng. Cách tìm đường vuông góc chung của 2 đường thẳng chéo nhau. BÀI TẬP: Bài 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA (ABCD) , biết SC = SD = 2a. Chứng minh: a. CD (SAD) b. BD (SAC) b. Tính góc giữa các cặp đường thẳng và mặt phẳng sau: + (SD, (ABCD)) =? + ( SC, (SAD)) = ? + ( SD, (SAB)) = ? c. Tính góc giữa hai mặt phẳng (SCD) và (ABCD). d. Tính góc giữa hai mặt phẳng (SBC) và (ABCD) Bài 2: Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C và SB (ABC), biết AC = a, BC = a, SB = 3a. Chứng minh: AC (SBC) Gọi BH là đường cao của tam giác SBC. Chứng minh: SA BH. Tính góc giữa đường thẳng SA và mặt phẳng (ABC) Bài 3: Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, mặt bên (SAB) là tam giác đều và vuông góc với đáy. Gọi E, F là trung điểm của AB và CD. Cho biết tam giác SCD vuông cân tại S. Chứng minh: + SE (SCD) và SF (SAB). b. Gọi H là hình chiếu vuông góc của S trên EF. Chứng minh: SH AC Tính góc giữa đường thẳng và mặt phẳng sau: + (BD, (SAD)) = ? + ( SD, (SCE)) = ? Bài 4: Cho hình chóp tứ giác đều S. ABCD, cạnh đáy bằng a, cạnh bên bằng . Gọi O là tâm của hình vuông ABCD. Và M là trung điểm của SC. Chứng minh: (MBD) (SAC) Tính ( SA, (ABCD)) = ? Tính góc giữa hai mặt phẳng ( MBD) và (ABCD). Tính góc giữa hai mặt phẳng ( SAB) và (ABCD). Bài 5: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a có góc và SA = SB SD = . Tính khoảng cách từ S đến mp (ABCD) và độ dài cạnh SC. Chứng minh mp (SAC) vuông góc với mp (ABCD). Chứng minh SB vuông góc với BC. Gọi là góc giữa 2 mp (SBD) và ( ABCD). Tính .

File đính kèm:

  • docde cuong on tap toan 11 hinh hoc va dai so.doc