Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2018-2019 - Sở GD&ĐT Thái Bình (Có đáp án)
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2018-2019 - Sở GD&ĐT Thái Bình (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
THÁI BÌNH LỚP 9_THCS NĂM HỌC 2018-2019
MÔN TOÁN
ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút
Năm học 2018-2019.Ngày thi 04/01/2019
Thời gian làm bài :150 phút
Câu 1(3 điểm).Cho biểu thức
xx 11xy x xy x
P 1 : 1 với x, y 0, xy 1.
xy 1 1 xy xy 1 1 xy
a)Rút gọn P
b)Tính giá trị của biểu thức P khi x 334 2 6 4 2 6, y x2 6
Câu 2(3 điểm).Trong mặt phẳng tọa độ với hệ trục tọa độ Oxy cho đường thẳng (d) :
(m 1) x y 3 m 4 và đường thẳng (d’) : x ( m 1) y m .Tìm m để (d) cắt (d’) tại
điểm M sao cho MOx 300
Câu 3(4 điểm).
a.Giải phương trình 3x1 6 x 3x2 14x80
3 2 2
x 2x 2x 2 y x y 4 0
b.Giải hệ phương trình
2
x xy 4 x 1 3x y 7
Câu 4 (2 điểm).Chứng minh rằng nếu a,b,c là độ dài ba cạnh của một tam giác có
chu vi bằng 3 thì 3a2 3b 2 3 c 2 4 abc 13
Câu 5 (3 điểm).Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và
AD.Gọi H là trực tâm và G là trọng tâm tam giác ABC.
a.Chứng minh nếu HG song song BC thì tanBC .tan 3
b.Chứng minh tanABCABC .tan .tan tan tan tan
Câu 6 (3 điểm).Cho tam giác ABC vuông tại A, đường cao AH, gọi I,J,K lần lượt là
tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các
đường thẳng AJ, AK với cạnh BC lần lượt là E và F.
a.Chứng minh I là tâm đường tròn ngoại tiếp tam giác AEF.
b. Chứng minh đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác
ABC có bán kính bằng nhau.
xy 2019
Câu 7 (2 điểm).Tìm tất cả các bộ số nguyên dương (x,y,z) sao cho là số
yz 2019
hữu tỉ và x2 y 2 z 2 là số nguyên tố .
GIẢI
Câu 1(3 điểm).Cho biểu thức
xx 11xy x xy x
P 1 : 1 với x, y 0, xy 1.
xy 1 1 xy xy 1 1 xy xx 1xy x xy x 1 1
a)Ta có P 1 : 1 .Rút gọn P
xy 1 1 xy xy 1 1 xy xy
1
được kết quả là P
xy
b)Ta có x 33426 426 x ( x2 6)8 xy 8. Nên ta có
11
P .
xy 22
3mm 2 2
Câu 2(3 điểm). Ta có tọa độ của ; là nghiệm của hệ phương trình
mm
x ( m 1) y m
.Từ M kẻ đường thẳng vuông góc với Ox tại B .Ta có
(m 1) x y 3 m 4
OM 2 23
MOx 3002 MB m .
43
Câu 3(4 điểm).
1
a.Điều kiện x 6.Ta có 3x1 6 x 3x2 14x80
3
31
(xx 5). 3x 1 0 5.
3x 1 4 6 x 1
Vậy nghiệm là x 5.
b.Giải hệ phương trình
3 2 2 2
x 2x2x2 y x y 40 ( x 2)( x y 2)0
22
x xy4 x 1 3x y 7 x xy 4 x 1 3x y 7
yx 2 yx 2
tới đây dùng bình
2 2
x xy 4 x 1 3x y 7 2x 6 x 1 4 x 5
phương rồi hệ số bất định nhé .
3
Câu 4 (2 điểm).Ta dễ dàng chứng minh được 0 a , b , c .Áp dụng BDT cô si cho
2
3 3 3 3 3 3
ba số dương ta có: a b c 33 ( a )( b )( c )
2 2 2 2 2 2
1 27 9 3 1 27 3
()()()a b c ab bc ca abc ab bc ca abc
8 8 4 2 8 8 2
4abc 14 6( ab bc ac ) 3a2 3b 2 3 c 2 4 abc 13.Dấu bằng xảy ra khi
a b c 1.
Câu 5 (3 điểm)
2
a) Tìm được tanB= AD ,tanC= AD => tanB.tanC= AD
BD CD BD. CD
AD
BDH ADC BDCD.. AD DH =>tanB.tanC= .
DH
AM
Ta được : 3 ( M là trung điểm của BC).Và ADM có HG//BC
GM
AM AH
HG/ / DM 3 tan B . tan C
GM HD
b)Ta có ABCABCABC 1800 180 0 tan( ) tan(180 0 ) .Từ đó chứng
minh được tanABCABC .tan .tan tan tan tan .
Câu 6 (3 điểm).Cho tam giác ABC vuông tại A, đường cao AH, gọi I,J,K lần lượt là
tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các
đường thẳng AJ, AK với cạnh BC lần lượt là E và F.
a.Chứng minh I là tâm đường tròn ngoại tiếp tam giác AEF.
b. Chứng minh đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác
ABC có bán kính bằng nhau.
A
I
K
J
B
C
E
H F
a.Cách 1.Trước tiên ta sẽ chứng minh I là trực tâm của tam giác AJKAJK.Gọi F là
giao điểm của tia AK và BC. Theo tính chất góc ngoài tam
giác AFB FA2 C HAC HAC HCA
. Lại có BAF BAH HAF 2 HAC HCA (Lưu ý : BAH HCA (cùng phụ HAC )
Suy ra BAF BF A nên tam giác ABF cân tại B.Mà BI là phân giác của tam
giác ABF cân tại B nên cũng là đường cao hay JI⊥AK.Tương tự KI⊥AJ. Vậy : I là
trực tâm của tam giác AJK.Ta có tam giác ABF có phân giác BI đồng thời là đường
cao nên tam giác ABF cân suy ra IA IF .Ta có tam giác ACE có phân giác CI đồng
thời là đường cao nên tam giác ACE cân suy ra IA IE .Vậy I là tâm đường tròn
ngoại tiếp tam giác AEF.
b. Kẻ IO vuông góc với BC=> O là trung điểm của EF.Ta chứng minh tam giác EKF
1 1
vuông tại K, EJF vuông tại J.Từ đó suy ra JOE OI OK F .Từ đó ta có OI FE
2 2
Đặt OI r .Ta chứng minh được AB+ AC- BC =2r ; AB +AC -BC =EF.Từ đó có
điều chứng minh.
xy 2019
Câu 7 (2 điểm).Tìm tất cả các bộ số nguyên dương (x,y,z) sao cho là số
yz 2019
hữu tỉ và x2 y 2 z 2 là số nguyên tố . xy 2019
Do là số hữu tỉ nên
yz 2019
x y2019 a
(a , b *) 2019( by az ) ay b x .
yz 2019 b
a y x
Nếu by az 0 và ay bx=0 thì xz y2 ( x , y , z ) ( tm 2 , tmn , tn 2 )
b z y
vớit,,* n m .
ay bx
Nếu by az 0 thì √ 2019 là số hữu tỉ (vô lí).
by az
Mà x2 y2 z2 t 2() m4 m 2 n 2 n4 là số nguyên tố .Nên suy ra (x , y , z ) (1,1,1).
File đính kèm:
de_thi_chon_hoc_sinh_gioi_cap_tinh_mon_toan_lop_9_nam_hoc_20.pdf