Đề thi thử Đại học lần 2 - Năm học 2011 môn: Toán (thời gian: 180 phút)

Câu V.a.( 2 điểm ) Theo chương trình Chuẩn

 1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y – 5 = 0

 2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng:

 và

a. Chứng minh rằng (d1) và (d2) chéo nhau.

b. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2).

3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu .

 

doc7 trang | Chia sẻ: luyenbuitvga | Lượt xem: 993 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử Đại học lần 2 - Năm học 2011 môn: Toán (thời gian: 180 phút), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN (Thời gian : 180 phút) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm): 1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : . Tìm điểm thuộc (C) cách đều 2 đường tiệm cận . 2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn . sin6x + cos6x = m ( sin4x + cos4x ) Câu II (2 điểm): 1).Tìm các nghiệm trên của phương trình : 2).Giải phương trình: Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên SA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB. 1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD. Câu IV (2 điểm): 1).Tính tích phân: I = 2). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn : 1 < | z – 1 | < 2 PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b Câu V.a.( 2 điểm ) Theo chương trình Chuẩn 1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d1) : 3x – 4y + 27 = 0 và (d2) : x + 2y – 5 = 0 2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng: và Chứng minh rằng (d1) và (d2) chéo nhau. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2). 3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu . Câu V.b.( 2 điểm ) Theo chương trình Nâng cao 1).Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : x – y - = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . 2).Cho đường thẳng (d) : và 2 mp (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0 a. Viết phương trình hình chiếu của (d) trên (P) b. Lập ph.trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q) 3). Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có đúng 3quân bài thuộc 1 bộ ( ví dụ 3 con K ) ----------------------------- Hết ----------------------------- Cán bộ coi thi không giải thích gì thêm. ®¸p ¸n ®Ò thi thö ®¹i häc lÇn 1 M«n thi: to¸n Thêi gian lµm bµi: 180 phót, kh«ng kÓ thêi gian giao ®Ò C©u Néi dung §iÓm I 2.0® 1 1,25® Kh¶o s¸t vµ vÏ §THS - TX§: D =\ {2} - Sù biÕn thiªn: + ) Giíi h¹n : nªn ®­êng th¼ng y = 3 lµ tiªm cËn ngang cña ®å thÞ hµm sè +) . Do ®ã ®­êng th¼ng x = 2 lµ tiÖm cËn ®øng cña ®å thÞ hµm sè +) B¶ng biÕn thiªn: Ta cã : y’ = < 0 , y’ y x - - 2 3 3 Hµm sè nghÞch biÕn trªn mçi kho¶ng vµ - §å thÞ + Giao ®iÓm víi trôc tung : (0 ;2) + Giao ®iÓm víi trôc hoµnh : ( 4/3 ; 0) + §THS nhËn giao ®iÓm I(2 ;3) cña hai ®­êng tiÖm cËn lµm t©m ®èi xøng x O y Gäi M(x;y) (C) vµ c¸ch ®Òu 2 tiÖm cËn x = 2 vµ y = 3 | x – 2 | = | y – 3 | VËy cã 2 ®iÓm tho¶ m·n ®Ò bµi lµ : M1( 1; 1) vµ M2(4; 6) 0,25 0,25 0,25 0.5 2 0.75® XÐt ph­¬ng tr×nh : sin6x + cos6x = m ( sin4x + cos4x ) (2) (1) §Æt t = sin22x . Víi th× . Khi ®ã (1) trë thµnh : 2m = víi NhËn xÐt : víi mçi ta cã : §Ó (2) cã 2 nghiÖm thuéc ®o¹n th× D­a vµo ®å thÞ (C) ta cã : y(1)< 2m ≤ y(3/4) VËy c¸c gi¸ trÞ cÇn t×m cña m lµ : 0,25 0,5 II 2,0® 1 1,0® (1) §K : sinx ≠ 0 Khi th× sinx > 0 nªn : (1) cos2x = cos Do nªn Khi th× sinx < 0 nªn : (1) cos2x = cos Do nªn 0,5 0,5 2 1,0® §Æt . Ta cã : Víi u = -3 , v = - 4 ta cã : x = - 61 Víi u = 4, v = 3 ta cã : x = 30 VËy Pt ®· cho cã 2 nghiÖm : x = -61 vµ x = 30 0,25 0,5 0.25 III 1.0® 1® a)Ta cã : AB = , Gäi M lµ trung ®iÓm cña BC , ta cã : DM = 1 SD = , SC = SM = Ta cã : (*) Gãc gi÷a hai ®­êng th¼ng AC vµ SD lµ gãc gi÷a hai ®­êng th¼ng DM vµ SD hay bï víi gãc SDM . Do ®ã : cos = b) KÎ DN // BC vµ N thuéc AC . Ta cã : BC // ( SND) . Do ®ã : d(BC, SD) = d( BC/(SND)) = d(c/(SND)) KÎ CK vµ AH vu«ng gãc víi SN , H vµ K thuéc ®­êng th¼ng SN Ta cã : DN // BC Vµ Tõ (1) vµ (2) suy ra : DN ( SAC) Do c¸ch dùng vµ (3) ta cã : CK (SND) hay CK lµ kho¶ng c¸ch tõ C ®Õn mp(SND) MÆt kh¸c : ΔANH = ΔCNK nªn AH = CK Mµ trong tam gi¸c vu«ng SAN l¹i cã : VËy kho¶ng c¸ch gi÷a BC vµ SD lµ : CK = 0.5 0,5 IV 2® 1 1.0® Ta cã : sinx – cosx + 1 = A(sinx + 2cosx + 3) + B(cosx – sinx) + C = (A – 2B) sinx + ( 2A + B) cosx + 3A + C VËy I = I = I = TÝnh J = . §Æt t = tan §æi cËn : Khi x = th× t = 1 Khi x = 0 th× t = 0 VËy L¹i ®Æt t = 1 = 2 tan u . suy ra dt = 2 ( tan2u + 1)du §æi cËn khi t = 1 th× u = Khi t = 0 th× u = víi tan Do ®ã : I = 0,25 0,25 0.5 2a 0.5® G/s sè phøc z cã d¹ng : z = x + iy víi x,y , | z | = Ta cã : | z | = 1 + ( z – 2 ) i = ( 1 – y ) + ( x – 2 ) i 0,5 0.5 2b 0.5đ G/s sè phøc z cã d¹ng : z = x + iy víi x,y , Ta cã : | z - i | = | x + ( y - 1)i | = Do ®ã : 1 < | z - i | < 2 1 < | z - i |2 < 4 Gäi (C1) , (C2) lµ hai ®­êng trßn ®ång t©m I( 0 ; 1) vµ cã b¸n kÝnh lÇn l­ît lµ : R1=1 , R2 = 2 . VËy tËp hîp c¸c ®iÓm cÇn t×m lµ phÇn n»m gi÷a hai ®­êng trßn (C1) vµ (C2) Va 3® 1 +) PT c¹nh BC ®i qua B(2 ; -1) vµ nhËn VTCP cña (d2) lµm VTPT (BC) : 4( x- 2) + 3( y +1) = 0 hay 4x + 3y - 5 =0 +) Täa ®é ®iÓm C lµ nghiÖm cña HPT : +) §­êng th¼ng ∆ ®i qua B vµ vu«ng gãc víi (d2) cã VTPT lµ ∆ cã PT : 2( x - 2) - ( y + 1) = 0 hay 2x - y - 5 = 0 +) Täa ®é giao ®iÓm H cña ∆ vµ (d2) lµ nghiÖm cña HPT : +) Gäi B’ lµ ®iÓm ®èi xøng víi B qua (d2) th× B’ thuéc AC vµ H lµ trung ®iÓm cña BB’ nªn : +) §­êng th¼ng AC ®i qua C( -1 ; 3) vµ B’(4 ; 3) nªn cã PT : y - 3 = 0 +) Täa ®é ®iÓm A lµ nghiÖm cña HPT : +) §­êng th¼ng qua AB cã VTCP , nªn cã PT : 0,25 0,5 0,25 2a §­êng th¼ng (d1) ®i qua M1( 1; -4; 3) vµ cã VTCP §­êng th¼ng (d2) ®i qua M2( 0; 3;-2) vµ cã VTCP Do ®ã : vµ Suy ra . VËy (d1) vµ (d2) chÐo nhau 0.5 2b LÊy A( 1; -4 + 2t; 3 + t) thuéc (d1) vµ B(-3u; 3 + 2u; -2) thuéc (d2) .Ta cã : A,B lµ giao ®iÓm cña ®­êng vu«ng gãc chung cña (d1) vµ (d2) víi hai ®­êng ®ã Suy ra : A( 1; -2; 4) vµ B(3; 1; -2) AB = 7 Trung ®iÓm I cña AB cã täa ®é lµ : ( 2; -; 1) MÆt cÇu (S) cÇn t×m cã t©m I vµ b¸n kÝnh lµ AB/2 vµ cã PT : 0,5 3 Sè c¸ch lÊy 2 bi bÊt k× tõ hai hép bi lµ : 52.25 = 1300 Sè c¸ch lÊy ®Ó 2 viªn bi lÊy ra cïng mµu lµ : 30x10+7x6+15x9 = 477 X¸c suÊt ®Ó 2 bi lÊy ra cïng mµu lµ : 0.5 0.5 Vb 3.0 ® 1 O y x A B C 600 +) Täa ®é ®iÓm B lµ nghiÖm cña HPT : Ta nhËn thÊy ®êng th¼ng BC cã hÖ sè gãc k = , nªn . Suy ra ®­êng ph©n gi¸c trong gãc B cña ΔABC cã hÖ sè gãc k’ = nªn cã PT : (Δ) T©m I( a ;b) cña ®­êng trßn néi tiÕp tam gi¸c ABC thuéc (Δ) vµ c¸ch trôc Ox mét kho¶ng b»ng 2 nªn : | b | = 2 + Víi b = 2 : ta cã a = , suy ra I=(  ; 2 ) + Víi b = -2 ta cã a = , suy ra I = (  ; -2) §­êng ph©n gi¸c trong gãc A cã d¹ng:y = -x + m (Δ’).V× nã ®i qua I nªn  + NÕu I=(  ; 2 ) th× m = 3 + 2. Suy ra : (Δ’) : y = -x + 3 + 2. Khi ®ã (Δ’) c¾t Ox ë A(3 + 2. ; 0) Do AC vu«ng gãc víi Ox nªn cã PT : x = 3 + 2. Tõ ®ã suy ra täa ®é ®iÓm C = (3 + 2 ; 6 + 2) VËy täa ®é träng t©m G cña tam gi¸c ABC lóc nµy lµ : . + NÕu I=(  ; 2 ) th× m = -1 - 2. Suy ra : (Δ’) : y = - x -1 - 2. Khi ®ã (Δ’) c¾t Ox ë A(-1 - 2. ; 0) Do AC vu«ng gãc víi Ox nªn cã PT : x = -1 - 2. Tõ ®ã suy ra täa ®é ®iÓm C = (-1 - 2 ; -6 - 2) VËy täa ®é träng t©m G cña tam gi¸c ABC lóc nµy lµ : . VËy cã hai tam gi¸c ABC tho¶ m·n ®Ò bµi vµ träng t©m cña nã lµ : G1 = vµ G2 = 0.25 0.5 0,25 2a + §­êng th¼ng (d) ®i qua M(0; -1; 0) vµ cã VTCP + Mp (P) cã VTPT : Mp (R) chøa (d) vµ vu«ng gãc víi (P) cã VTPT : Thay x, y, z tõ Pt cña (d) vµo PT cña (P) ta cã : t - 2 - 2t + 3 = 0 hay t =1 . Suy ra (d) c¾t (P) t¹i K(1; -1; -1) H×nh chiÕu (d’) cña (d) trªn (P) ®i qua K vµ cã VTCP : VËy (d’) cã PTCT : 0,25 0,25 2b LÊy I(t; -1; -t) thuéc (d) , ta cã : d1 = d(I, (P)) = ; d2 = d(I, (Q)) = Do mÆt cÇu t©m I tiÕp xóc víi (P0 vµ (Q) nªn : R = d1 = d2 | 1 - t | = | 5 - t | t = 3 Suy ra : R = 2/3 vµ I = ( 3; -1; -3 ) . Do ®ã mÆt cÇu cÇn t×m cã PT lµ : 0,25 0,25 3. sai Sè c¸ch chän 5 qu©n bµi trong bé bµi tó l¬ kh¬ lµ : Sè c¸ch chän 5 qu©n bµi trong bé bµi tó l¬ kh¬ mµ trong 5 qu©n bµi ®ã cã ®óng 3 qu©n bµi thuéc 1 bé lµ : 13. X¸c suÊt ®Ó chän 5 qu©n bµi trong bé bµi tó l¬ kh¬ mµ trong 5 qu©n bµi ®ã cã ®óng 3 qu©n bµi thuéc 1 bé lµ : = 0.5 0.5

File đính kèm:

  • docDE THI THU DH 3.doc
Giáo án liên quan