Câu 4: (5,5 điểm):
Cho đường tròn tâm (O) đường kính AB, xy là tiếp tuyến tại B với đường tròn, CD là một đường kính bất kỳ. Gọi giao điểm của AC và AD với xy theo thứ tự là M, N.
a) Chứng minh rằng: MCDN là tứ giác nội tiếp một đường tròn.
b) Chứng minh rằng: AC.AM = AD.AN
c) Gọi I là đường tâm tròn ngoại tiếp tứ giác MCDN. Khi đường kính CD quay quanh tâm O thì điểm I di chuyển trên đường tròn nào ?
Câu 5: (2 điểm):
Cho M thuộc cạnh CD của hình vuông ABCD. Tia phân giác của góc ABM cắt AD ở I. Chứng minh rằng: BI 2MI.
2 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1007 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi thử học sinh giỏi Toán 9 - Đề số 14, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ SỐ 14
Câu 1: (4,5 điểm) : Giải các phương trình sau:
1)
2)
Câu 2: (4 điểm)
1) Chứng minh rằng:
2) Chứng minh rằng nếu a, b, c là chiều dài 3 cạnh của một tam giác thì:
ab + bc ³ a2 + b2 + c2 < 2 (ab + bc + ca)
Câu 3: (4 điểm)
1) Tìm x, y, z biết:
2) Tìm GTLN của biểu thức :
biết x + y = 8
Câu 4: (5,5 điểm):
Cho đường tròn tâm (O) đường kính AB, xy là tiếp tuyến tại B với đường tròn, CD là một đường kính bất kỳ. Gọi giao điểm của AC và AD với xy theo thứ tự là M, N.
a) Chứng minh rằng: MCDN là tứ giác nội tiếp một đường tròn.
b) Chứng minh rằng: AC.AM = AD.AN
c) Gọi I là đường tâm tròn ngoại tiếp tứ giác MCDN. Khi đường kính CD quay quanh tâm O thì điểm I di chuyển trên đường tròn nào ?
Câu 5: (2 điểm):
Cho M thuộc cạnh CD của hình vuông ABCD. Tia phân giác của góc ABM cắt AD ở I. Chứng minh rằng: BI £ 2MI.
File đính kèm:
- hsgtoan9d14.doc