A. MỤC TIÊU:
- Kiến thức: HS nhận biết được vế trái, vế phải và biết dùng dấu của bất đẳng thức (> ; < ; ; ).
- Kĩ năng : + Biết tính chất liên hệ giữa thứ tự và phép cộng.
+ Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ giữa thứ tự và phép cộng.
- Thái độ : Rèn tính cẩn thận cho HS.
B. CHUẨN BỊ CỦA GV VÀ HS:
- GV: + Bảng phụ ghi bài tập , hình vẽ minh hoạ. Thước kẻ có chia khoảng.
- HS: + Ôn tập "Thứ tự trong Z" (Toán 6 tập 1) và "So sánh hai số hữu tỉ" (Toán 7 tập 1).
C. TIẾN TRÌNH DẠY HỌC:
7 trang |
Chia sẻ: oanh_nt | Lượt xem: 971 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Đại số 8 năm học 2009- 2010 Tiết 57 Liên hệ giữa thứ tự và phép cộng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Soạn: 20/3/2010
Giảng:
Chương IV: bất phương trình bậc nhất một ẩn
Tiết 57: Đ1- liên hệ giữa thứ tự và phép cộng
A. Mục tiêu:
- Kiến thức: HS nhận biết được vế trái, vế phải và biết dùng dấu của bất đẳng thức (> ; < ; ³ ; ).
- Kĩ năng : + Biết tính chất liên hệ giữa thứ tự và phép cộng.
+ Biết chứng minh bất đẳng thức nhờ so sánh giá trị các vế ở bất đẳng thức hoặc vận dụng tính chất liên hệ giữa thứ tự và phép cộng.
- Thái độ : Rèn tính cẩn thận cho HS.
B. chuẩn bị của GV và HS:
- GV: + Bảng phụ ghi bài tập , hình vẽ minh hoạ. Thước kẻ có chia khoảng.
- HS: + Ôn tập "Thứ tự trong Z" (Toán 6 tập 1) và "So sánh hai số hữu tỉ" (Toán 7 tập 1).
C. Tiến trình dạy học:
1.Tổ chức:8A......................................................................................
8B......................................................................................
2.Kiểm tra:
3. Bài mới:
Giới thiệu về chương iV :
GV: ở chương III chúng ta đã được học về phương trình biểu thị quan hệ bằng nhau giữa hai biểu thức. Ngoài quan hệ bằng nhau, hai biểu thức còn có quan hệ không bằng nhau được biểu thị qua bất đẳng thức, bất phương trình.
Qua chương IV các em sẽ được biết về bất đẳng thức, bất phương trình, cách chứng minh một số bất đẳng thức, cách giải một số bất phương trình đơn giản, cuối chương là phương trình chứa dấu giá trị tuyệt đối. Bài đầu ta học : Liên hệ giữa thứ tự và phép cộng.
Hoạt động của gv
GV: Trên tập hợp số thực, khi so sánh hai số a và b, xảy ra những trường hợp nào ?
GV: Nếu a lớn hơn b, kí hiệu a > b.
Nếu a nhỏ hơn b, kí hiệu là a < b.
Nếu a bằng b , kí hiệu a = b.
Và khi biểu diễn các số trên trục số nằm ngang, điểm biểu diễn số nhỏ hơn ở bên trái điểm biểu diễn số lớn hơn.
GV yêu cầu HS quan sát trục số trong tr.35 SGK rồi trả lời: Trong các số được biểu diễn trên trục số đó, số nào là hữu tỉ? Số nào là vô tỉ ? So sánh và 3.
GV yêu cầu HS làm ?1.
Điền dấu thích hợp (=, ) vào ô vuông.
(Đề bài đưa lên bảng phụ).
GV: Với x là một số thực bất kỳ, hãy so sánh x và số 0.
- Vậy x2 luôn lớn hơn hoặc bằng 0 với mọi x, ta viết x2 0 với mọi x.
- Tổng quát, nếu c là một số không âm ta viết thế nào ?
Nếu a không nhỏ hơn b, ta viết thế nào?
GV: Tương tự , với x là một số thực bất kì, hãy so sánh - x2 với số 0.
Viết kí hiệu.
- Nếu a không lớn hơn b, ta viết thế nào?
- Nếu y không lớn hơn 5, ta viết thế nào?
Hoạt động của hs
1. Nhắc lại về thứ tự trên tập hợp số:
HS: Khi so sánh hai số a và b, xảy ra các trường hợp: a lớn hơn b hoặc a nhỏ hơn b hoặc a bằng b.
HS: Trong các số được biểu diễn trên trục số đó, số hữu tỉ là: -2 ; -1,3 ; 0 ; 3. Số vô tỉ là .
So sánh và 3 : < 3 vì 3 = mà < hoặc điểm nằm bên trái điểm 3 trên trục số.
HS làm ?1. vào vở.
Một HS lên bảng làm.
?1. a) 1,53 < 1,8.
b) -2,37 > -2,41.
c) = .
d) < Vì .
HS: Nếu x là số dương thì x2 > 0.
Nếu x là số âm thì x2 > 0. Nếu x là 0 thì x2 = 0.
Một HS lên bảng viết c 0.
- HS: Nừu a không nhỏ hơn b thì a phải lớn hơn b hoặc a = b, ta viết a b.
HS: x là một số thực bất kỳ thì -x2 luôn nhỏ hơn hoặc bằng 0.
Kí hiệu -x2 0.
- Một HS lên bảng viết:
a b.
y 5.
GV giới thiệu: Ta gọi hệ thức
Dạng a b, a b , a b) là bất đẳng thức, với a là vế trái, b là vế phải của bất đẳng thức.
Hãy lấy ví dụ về bất đẳng thức và chỉ ra vế trái, vế phải của bất đẳng thức đó.
2. Bất đẳng thức:
HS nghe GV trình bày.
HS lấy ví dụ về bất đẳng thức chẳng han:
- 2 < 1,5.
a + 2 > a
a + 2 b - 1.
3x - 7 2x + 5.
Rồi chỉ ra vế trái, vế phải của mỗi bất đẳng thức.
GV: - Cho biết bất đẳng thức biểu diễn mối quan hệ giữa (-4) và 2.
- Khi cộng 3 và cả hai vế của bất đẳng thức đó, ta được bất đẳng thức nào ? GV đưa hình vẽ tr.36 SGK sau lên BP
- 4 -3 - 2 -1 0 1 2 3 4 5
- 4 + 3 2 + 3
- 4 -3 -2 -1 0 1 2 3 4 5
GV nói : Hình vẽ này minh hoạ cho kết quả : Khi cộng 3 vào cả hai vế của bất đẳng thức -4 < 2 ta được bất đẳng thức -1 < 5 cùng chiều với bất đẳng thức đã cho (GV giới thiệu về hai bất đẳng thức cùng chiều).
GV yêu cầu HS làm ?2.
GV: Liên hệ giữa thứ tự và phép cộng ta có tính chất sau:
Tính chất: Với ba số a, b, c ta có:
Nếu a < b thì a + c < b + c.
Nếu a b thì a + c b + c.
Nếu a > b thì a + c > b + c.
Nếu a b thì a + c b + c.
(Tính chất này GV đưa lên bảng phụ).
GV yêu cầu: Hãy phát biểu thành lời tính chất trên.
GV cho vài HS nhắc lại tính chất trên bằng lời.
GV yêu cầu HS xem Ví dụ 2 rồi làm ?3 và ?4.
GV giới thiệu tính chất của thứ tự cũng chính là tính chất của bất đẳng thức
3. Liên hệ giữa thứ tự và phép cộng:
HS: - 4 < 2.
HS: - 4 + 3 < 2 + 3. Hay -1 < 5 .
?2. HS: a) Khi cộng -3 vào cả hai vế của bất đẳng thức -4 < 2 thì được bất đẳng thức: -4 - 3 < 2 - 3
hay -7 < -1.
Cùng chiều với bất đẳng thức đã cho.
b) Khi cộng số c vào cả hai vế của bất đẳng thức -4 < 2 thì được bất đẳng thức
-4 + c < 2 + c.
HS phát biểu: Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
HS cả lớp làm ?3 và ?4.
Hai HS lên bảng trình bày:
?3. Có -2004 > -2005.
ị -2004 + (-777) > -2005 + (-777)
theo tính chất liên hệ giữa thứ tự và phép cộng.
?4. Có < 3 (vì 3 = ).
ị + 2 < 3 + 2
hay + 2 < 5.
Bài 1 (a,b) tr.37/ SGK.
(Đề bài đưa lên bảng phụ)
Bài 2 (a) tr.37 /SGK.
Cho a < b, hãy so sánh a + 1 và b + 1
Bài 3 (a) tr.37/ SGK.
So sánh a và b nếu a - 5 b - 5.
Bài 4 tr.37 /SGK.
(Đề bài đưa lên bảng phụ)
GV yêu cầu một HS đọc to đề bài và trả lời.
GV nêu thêm việc thực hiện quy định về vận tốc trên các đoạn đường là chất hành luật giao thông, nhằm đảm bảo an toàn giao thông.
Bài 1(a,b) tr.37/ SGK.
HS trả lời miệng
a) -2 + 3 2 . Sai
vì -2 + 3 = 1 mà 1 < 2.
b) -6 2(-3). Đúng
vì 2.(-3) = -6.
ị -6 -6 là đúng.
Bài 2 (a) tr.37 /SGK.
HS: Có a < b, cộng 1 vào cả hai vế bất đẳng thức ta được a + 1 < b + 1.
Bài 3 (a) tr.37/ SGK.
HS: Có a - 5 b - 5, cộng 5 vào cả hai vế bất đẳng thức được
a - 5 + 5 b - 5 + 5.
Hay a b.
Bài 4 tr.37 /SGK.
HS đọc to đề bài.
HS trả lời a 20.
4.Hướng dẫn về nhà:
- Nắm vững tính chất liên hệ giữa thứ tự và phép cộng (dưới dạng công thức và phát biểu thành lời).
- Bài tập về nhà số 1 (c,d) , 2 (b), b (b) tr.37 SGK và bài số 1,2,3,4,7,8 tr.41,42 SBT.
___________________________________________________
Soạn:20/3/2010
Giảng:
Tiết 58: Đ2 - liên hệ giữa thứ tự và phép nhân
A. Mục tiêu:
- Kiến thức: HS nắm được tính chất liên hệ giữa thứ tự và phép nhân (với số dương và số âm) ở dạng bất đẳng thức, tính chất bắc cầu của thứ tự.
- Kĩ năng : HS biết cách sử dụng tính chất liên hệ giữa thứ tự và phép nhân, tính chất bắc cầu để chứng minh bất đẳng thức hoặc so sánh các số.
- Thái độ : Rèn tính cẩn thận cho HS.
B. chuẩn bị của GV và HS:
- GV: + Bảng phụ ghi bài tập , hình vẽ minh hoạ, tính chất.
+ Thước thẳng có chia khoảng.
- HS: + Thước kẻ, bảng phụ nhóm, bút dạ.
C. Tiến trình dạy học:
1.Tổ chức:8A....................................................................................
8B....................................................................................
2.Kiểm tra:
GV nêu yêu cầu kiểm tra
- Phát biểu tính chất liên hệ giữa thứ tự và phép cộng.
- Chữa bài số 3 tr.41 /SBT.
Đặt dấu " , , " vào ô vuông cho thích hợp.
GV lưu ý câu c còn có thể viết (-4)2 + 7 16 + 7.
GV nhận xét , cho điểm.
Một HS lên bảng kiểm tra
- Phát biểu tính chất: Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
- Chữa bài số 3 tr.41 /SBT.
a) 12 + (-8) > 9 + (-8)
b) 13 - 19 < 15 - 19
c) (-4)2 + 7 16 + 7
d) 452 + 12 > 450 + 12.
HS nhận xét bài làm của bạn.
3.Bài mới:
Hoạt động của gv
GV: Cho hai số -2 và 3, hãy nêu bất đẳng thức biểu diễn mối quan hệ giữa (-2) và 3.
- Khi nhân cả hai vế của bất đẳng thức đó với 2 ta được bất đẳng thức nào ?
- Nhận xét về chiều của hai bất đẳng thức.
GV đưa hình vẽ hai trục số tr.37 SGK lên bảng phụ để minh hoạ cho nhận xét trên.
- GV yêu cầu HS thực hiện ?1.
GV: Liên hệ giữa thứ tự và phép nhân với số dương ta có tính chất sau :
Với 3 số a,b và c mà c > 0.
Nếu a < b thì ac < bc.
Nếu a b thì ac bc.
Nếu a > b thì ac > bc.
Nếu a b thì ac bc.
(Tính chất này GV đưa lên bảng phụ).
GV yêu cầu : Hãy phát biểu thành lời tính chất trên.
- GV yêu cầu HS làm ?2.
Đặt dấu thích hợp () vào ô vuông.
Hoạt động của hs
1. Liên hệ giữa thứ tự và phép nhân với số dương:
HS: -2 < 3.
HS: -2.2 < 3.2
Hay -4 < 6.
- Hai bất đẳng thức cùng chiều.
- HS làm ?1.
a) Nhân cả hai vế của bất đẳng thức
-2 < 3 với 5091 thì được bất đẳng thức -10182 < 15237.
b) Nhân cả hai vế của bất đẳng thức -2 < 3 với số c dương thì được bất đẳng thức -2c < 3c.
HS phát biểu: Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
?2.
a) (-15,2).3,5 < (-15,08).3,5
b) 4,15 . 2,2 > (-5,3) . 2,2
GV: Có bất đẳng thức -2 < 3. Khi nhân cả hai vế với bất đẳng thức đó với (-2), ta được bất đẳng thức nào ?
GV đưa hình vẽ hai trục số tr.38 SGK lên bảng phụ để minh hoạ cho nhận xét trên.
Từ ban đầu vế trai nhỏ hơn vế phải, khi nhân cả hai vế với (-2) vế trái lại lớn hơn vế phải. Bất đẳng thức đã đổi chiều.
GV yêu cầu HS làm ?3.
GV đưa ra bài tập:
Hãy điền dấu ", , " vào ô vuông cho thích hợp.
Với ba số a,b và c mà c < 0.
Nếu a < b thì ac bc
Nếu a b thì ac bc
Nếu a > b thì bc
Nếu a b thì ac bc
GV yêu cầu HS:
- Nhận xét bài làm của bạn.
- Phát biểu thành lời tính chất.
- GV cho vài HS nhắc lại và nhấn mạnh: Khi nhân cả hai vế của một bất đẳng thức với số âm phải đổi chiều bất đẳng thức.
- GV yêu cầu HS làm ?4 và ?5.
GV lưu ý: Nhân hai vế của bất đẳng thức với cũng là chia hai vế cho - 4
GV cho HS làm bài tập:
Cho m < n , hãy so sánh:
a) 5m và 5n.
b) và
c) -3m và -3n.
d) và .
2. Liên hệ giữa thứ tự và phép nhân với số âm:
HS: Từ -2 3.(-2) vì 4 > -6.
?3.
a) Nhân cả hai vế của bất đẳng thức -2 -1035.
b) Nhân cả hai vế của bất đẳng thức -2 3c.
HS làm bài tập:
Hai HS lần lượt lên bảng điền.
Nếu a < b thì ac < bc
Nếu a b thì ac bc
Nếu a > b thì ac > bc
Nếu a b thì ac bc
HS lớp nhận xét bạn điền dấu có đúng không và phát biểu thành lời tính chất trên.
Khi nhân cả hai vế của một bất phương trình với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
?4.
Cho - 4a > - 4b.
Nhân cả hai vế với , ta có a < b
?5
Khi chia hai vế của bất đẳng thức cho cùng một số khác 0, ta phải xét hai trường hợp:
- Nếu chia hai vế cho cùng số dương thì bất đẳng thức không đổi chiều.
- Nếu chia hai vế của bất đẳng thức cho cùng một số âm thì bất đẳng thức phải đổi chiều.
HS trả lời miệng:
a) 5m < 5n.
b) .
c) -3m > -3n.
d)
GV: Với ba số a,b,c nếu a <b và b < c thì a < c, đó là tính chất bắc cầu của thứ tự nhỏ hơn.
Tương tự, các thứ tự lớn hơn, nhỏ hơn hoặc bằng, lớn hơn hoặc bằng cũng có tính chất bắc cầu.
GV cho HS đọc Ví dụ tr.39 SGK.
3. Tính chất bắc cầu của thứ tự :
HS nghe GV trình bày.
HS đọc Ví dụ SGK.
Bài 5 tr.39 /SGK.
Mỗi khẳng định sau đây đúng hay sai ? Vì sao ?
a) (-6). 5 < (-5).5
b) (-6). (-3) < (-5). (-3)
c) (-2003). (-2005) (-2005). 2004
d) -3x2 0.
Bài 7 tr.40 /SGK.
Số a là số âm hay dương nếu:
a) 12a < 15a
b) 4a < 3a
c) -3a > -5a
Bài 5 tr.39 /SGK.
HS trả lời miệng:
a) Đúng vì -6 < -5
có 5 > 0 ị (-6). 5 < (-5). 5
b) Sai vì -6 < -5
có -3 (-5). (-3).
c) Sai vì -2003 < 2004
có -2005 < 0
ị (-2003).(-2005) > 2004. (-2005)
d) Đúng vì x2 > 0
có -3 < 0 ị -3x2 < 0
Bài 7 tr.40 /SGK.
a) Có 12 0.
b) Có 4 > 3 mà 4a < 3c ngược chiều với bất đẳng thức trên chứng tỏ a < 0.
c) -3 > -5 mà -3a > -5a chứng tỏ a > 0.
4.Hướng dẫn về nhà:
- Nắm vững tính chất liên hệ giữa thứ tự và phép cộng, liên hệ giữa thứ tự và phép nhân, tính chất bắc cầu của thứ tự.
- Bài tập về nhà số 6,9,10,11 tr.39,40 SGK. Bài số 10,12,13,14,15 tr.42 SBT.
- Tiết sau luyện tập.
File đính kèm:
- dai8t57,58.DOC