Giáo án Đại số 9 - Tiết 51 : Phương trình bậc hai một ẩn

A.MỤC TIÊU

- Về kiến thức : Học sinh nắm được định nghĩa phương trình bậc hai một ẩn : Dạng tổng quát , dạng đặc biệt khi b hoặc c bằng 0 hoặc cả b và c bằng 0 . Luôn chú ý nhớ a 0 .

- Về kỹ năng :

+ Học sinh biết phương pháp giải riêng các phương trình dạng đặc biệt , giải thành thạo các phương trình thuộc hai dạng đặc biệt đó .

+ Học sinh biết biến đổi phương trình dạng tổng quát : ax2 + bx + c = 0 ( a 0 ) về dạng

 trong các trường hợp cụ thể của a , b , c để giải phương trình .

- Về tính thực tiễn : Học sinh thấy được tính thực tế của phương trình bậc hai một ẩn .

B.CHUẨN BỊ:

Thày : Soạn bài ,

Trò : Một số phép biến đổi về hằng đẳng thức

C-PHƯƠNG PHÁP: Đàm thoại + Vấn đáp

D-TIẾN TRÌNH BÀI DẠY:

I.Ổn định tổ chức: 1

II.Bài cũ.

III.Bài mới:

 

doc7 trang | Chia sẻ: oanh_nt | Lượt xem: 854 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo án Đại số 9 - Tiết 51 : Phương trình bậc hai một ẩn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: Ngày dạy: Tiết 51 Phương trình bậc hai một ẩn A.MụC TIÊU - Về kiến thức : Học sinh nắm được định nghĩa phương trình bậc hai một ẩn : Dạng tổng quát , dạng đặc biệt khi b hoặc c bằng 0 hoặc cả b và c bằng 0 . Luôn chú ý nhớ a ạ 0 . - Về kỹ năng : + Học sinh biết phương pháp giải riêng các phương trình dạng đặc biệt , giải thành thạo các phương trình thuộc hai dạng đặc biệt đó . + Học sinh biết biến đổi phương trình dạng tổng quát : ax2 + bx + c = 0 ( a ạ 0 ) về dạng trong các trường hợp cụ thể của a , b , c để giải phương trình . - Về tính thực tiễn : Học sinh thấy được tính thực tế của phương trình bậc hai một ẩn . B.Chuẩn bị: Thày : Soạn bài , Trò : Một số phép biến đổi về hằng đẳng thức C-phương pháp: Đàm thoại + Vấn đáp D-Tiến trình bài dạy: I.ổn định tổ chức: 1’ II.Bài cũ. III.Bài mới: Hoạt động của thầy và trò Nội dung Hoạt động 1: 8’ - GV treo bảng phụ vẽ hình 12 ( sgk ) và gọi học sinh lập phương trình để giải bài toán . - GV gợi ý : Gọi bề rộng mặt đường là x ( m) đ hãy tính chiều dài phần đất và chiều rộng còn lại đ tính diện tích phần đất còn lại . - HS làm sau đó GV đưa ra lời giải để HS đối chiếu . - Hãy biến đổi đơn giản phương trình trên và nhận xét về dạng phương trình ? - Phương trình trên gọi là phương trình gì ? em hãy nêu dạng tổng quát của nó ? Hoạt động 2: 10’ - Qua bài toán trên em hãy phát biểu định nghĩa về phương trình bậc hai một ẩn . - HS phát biểu ; GV chốt lại định nghĩa trong sgk - 40 . ? Hãy lấy một vài ví dụ minh hoạ phương trình bậc hai một ẩn số . - GV cho HS làm ra phiếu cá nhân sau đó thu một vài phiếu để nhận xét . Gọi 1 HS đứng tại chỗ nêu ví dụ . - Chỉ ra các hệ số a , b , c trong các phương trình trên ? - GV treo bảng phụ ghi ? 1 ( sgk ) yêu cầu HS thực hiện các yêu cầu của bài . - HS làm ra phiếu cá nhân đ GV thu một vài phiếu kiểm tra kết quả và nhận xét sau đó đưa đáp án để HS đối chiếu . - Hãy nêu các hệ số a , b ,c trong các phương trình trên ? Hoạt động 3: 17’ - GV ra ví dụ 1 yêu cầu HS đọc lời giải trong sgk và nêu cách giải phương trình bậc hai .dạng trên . - áp dụng ví dụ 1 hãy thực hiện ? ( sgk ) - HS làm GV nhận xét và chốt lại cách làm . - Gợi ý : đặt x làm nhân tử chung đưa phương trình trên về dạng tích rồi giải phương trình . - GV ra tiếp ví dụ 2 yêu cầu HS nêu cách làm . Đọc lời giải trong sgk và nêu lại cách giải phương trình dạng trên . - áp dụng cách giải phương trình ở ví dụ 2 hãy thực hiện ? 3 ( sgk ) - GV cho HS làm sau đó gọi HS lên bảng làm bài . - Tương tự như ? 3 hãy thực hiện ? 4 ( sgk ) - GV treo bảng phụ ghi ? 4 ( sgk ) cho HS làm ? 4 ( sgk ) theo nhóm sau đó thu bài làm của các nhóm để nhận xét . Gọi 1 HS đại diện điền vào bảng phụ . - Các nhóm đối chiếu kết quả . GV chốt lại cách làm . - GV treo bảng phụ ghi ? 5 ( sgk ) yêu cầu HS nêu cách làm và làm vào vở . - Gợi ý : viết x2 - 4x + 4 = (x - 2)2 từ đó thực hiện như ? 4 ( sgk ) - HS lên bảng trình bày lời giải ? 5 ( sgk ) - Hãy nêu cách giải phương trình ở ? 6 ( sgk ) . - Gợi ý : Hãy cộng 4 vào 2 vế của phương trình sau đó biến đổi như ? 5 ( sgk ) - GV cho HS làm ? 6 theo hướng dẫn . - Tương tự cho HS làm ? 7 ( sgk ) - 1 HS làm bài . - GV chốt lại cách làm của các phương trình trên . - GV cho HS đọc sách để tìm hiểu cách làm của ví dụ 3 ( sgk ) sau đó gọi HS lên bảng trình bày . * Chú ý : Phương trình 2x2 - 8x - 1 = 0 là một phương trình bậc hai đủ . Khi giải phương trình ta đã biến đổi để vế trái là bình phương của một biểu thức chứa ẩn , vế phải là một hằng số . Từ đó tiếp tục giải phương trình . 1.Bài toán ( sgk ) Giải ( sgk ) Phương trình ( 32 - 2x) ( 24 - 2x) = 560 Û x2 - 28 x + 52 = 0 gọi là phương trình bậc hai một ẩn . 2 : Định nghĩa * Định nghĩa ( sgk ) Phương trình ax2 + bx + c = 0 ( a ạ 0 ) là phương trình bậc hai một ẩn :trong đó x là ẩn , a , b ,c là những số cho trước gọi là hệ số ( a ạ 0 ) * Ví dụ ( sgk ) a) x2 + 50 x - 15 000 = 0 là phương trình bậc hai có các hệ số a = 1 ; b = 50 ; c = -15 000 . b) - 2x2 + 5x = 0 là phương trình bậc hai có các hệ số a = - 2 ; b = 5 ; c = 0 . c) 2x2 - 8 = 0 là phương trình bậc hai có các hệ số là a = 2 ; b = 0 ; c = - 8 . ? 1 ( sgk ) Các phương trình bậc hai là : a) x2 - 4 = 0 ( a = 1 , b = 0 , c = - 4 ) c) 2x2 + 5x = 0 ( a = 2 , b = 5 , c = 0) e ) - 3x2 = 0 ( a = - 3 , b = 0 , c = 0 ) 3 : Một số ví dụ về giải phương trình bậc hai Ví dụ 1 ( sgk ) ? 2 ( sgk ) Giải phương trình 2x2 + 5x = 0 Û x ( 2x + 5 ) = 0 Û Vậy phương trình có hai nghiệm là x = 0 hoặc x = Ví dụ 2 ( sgk ) ? 3 ( sgk ) Giải phương trình : 3x2 - 2 = 0 Û 3x2 = 2 Û vậy pt có hai nghiệm là x = hoặc x = ? 4 ( sgk )Giải phương trình : Û Vậy phương trình có hai nghiệm là : x = hoặc x = ? 5 ( sgk ) Giải phương trình : x2 - 4x + 4 = Û ( x - 2)2 = Û x = 2 . Vậy phương trình có hai nghiệm là : x = hoặc x = ? 6 ( sgk ) Ta có : x2 - 4x = Û x2 - 4x + 4 = 4 Û x2 - 4x + 4 = ( như ? 5 ) ? 7 ( sgk ) 2x2 - 8x = - 1 Û x2 - 4x = ( như ? 6 ) * Ví dụ 3 ( sgk ) Giải phương trình 2x2 - 8x - 1 = 0 - Chuyển 1 sang vế phải : 2x2 - 8x = -1 - Chia hai vế cho 2 ta được : x2 - 4x = - Tách 4x = 2.2x và thêm vào hai vế 1 số để vế trái trở thành một bình phương . x2 - 2.x.2 + 22 = + 22 ta được phương trình : x2 - 2.x.2 + 4 = 4 hay ( x - 2)2 = Suy ra x - 2 = hay x = 2 Vậy phương trình có hai nghiệm là : x1 = , x2 = IV. Củng cố : - Qua các ví dụ đã giải ở trên em hãy nhận xét về số nghiệm của phương trình bậc hai . - Giải bài tập 12 (a) ; (b) - 2 HS lên bảng làm bài a) x2 - 8 = 0 Û x2 = 8 Û x = b) 5x2 - 20 = 0 Û 5x2 = 20 Û x2 = 4 Û x = V. Hướng dẫn - Nắm chắc các dạng phương trình bậc hai , cách giải từng dạng . - Nắm được cách biến đổi phương trình bậc hai đầy đủ về dạng bình phương để giải phương trình - Xem lại các ví dụ và bài tập đã chữa . Chú ý cách giải ví dụ 3 ( sgk ) - Giải bài tập trong sgk - 42 , 43 . - BT 11 ( sgk ) - Chuyển về vế trái biến đổi về dạng ax2 + bx + c = 0 . -------o0o-------- Ngày soạn: Ngày dạy: Tiết 52 luyện tập A.MụC TIÊU - Học sinh được củng cố lại khái niệm phương trình bậc hai một ẩn , xác định thành thạo các hệ số a , b , c ; đặc biệt là a ạ 0 . - Giải thành thạo các phương trình bậc hai thuộc hai dạng đặc biệt khuyết b : ax2 + c = 0 và khuyết c : ax2 + bx = 0 . - Biết và hiểu cách biến đổi một số phương trình có dạng tổng quát ax2 + bx + c = 0 ( a ạ 0 ) để được một phương trình có vế trái là một bình phương vế phải là hằng số . B-Chuẩn bị: Thày : - Soạn bài Trò : - Học thuộc các khái niệm đã học , cách giải phương trình bậc hai dạng khuyết và dạng đầy đủ . C-phương pháp: Đàm thoại + Vấn đáp D-Tiến trình bài dạy: I.ổn định tổ chức: 1’ II.Bài cũ. -Nêu dạng phương trình bậc hai một ẩn số.Cho ví được về các dạng phương trình bậc hai . - Giải bài tập 11 ( a ) , ( c ) - 2 HS lên bảng làm bài . III.Bài mới: Hoạt động của thầy Nội dung . Giải bài tập 12 ( sgk - 42 - GV ra bài tập 12 ( c , d, e ) ghi đầu bài vào bảng phụ sau đó yêu cầu HS làm bài . ? Nêu dạng của từng phương trình trên và cách giải đối với từng phương trình . ? Giải phương trình khuyết b ta biến đổi như thế nào ? Khi nào thì phương trình có nghiệm . ? Nêu cách giải phương trình dạng khuyết c . ( đặt nhân tử chung đưa về dạng tích ) - GV cho HS lên bảng làm bài sau đó gọi học sinh nhận xét và chốt lại cách làm . - Tương tự như phần (d) em hãy giải phương trình phần e . HS lên bảng làm , GV nhận xét cho điểm . - Nêu lại cách biến đổi giải phương trình bậc hai một ẩn dạng khuyết c và b . bài tập 13 ( sgk – 43 - GV ra bài tập 13 ( sgk ) treo bảng phụ ghi đầu bài HS suy nghĩ tìm cách biến đổi . ? Để biến đổi vế trái thành bình phương của một biểu thức ta phải cộng thêm vào hai vế số nào ? vì sao ? Hãy nêu cách làm tổng quát . - Gợi ý : 8x = 2.x.4 ( viết thành hai lần tích của hai số ) - Tương tự như phần (a) hãy nêu cách biến đổi phần (b) . - GV cho HS suy nghĩ tìm cách giải sau đó gọi HS lên bảng trình bày lời giải phương trình trên . - Vậy phương trình trên có nghiệm như thế nào ? bài tập 14 ( sgk - 43) - Nêu các bước biến đổi của ví dụ 3 ( sgk - 42 ) - áp dụng vào bài tập trên em hãy nêu cách biến đổi ? - GV cho HS làm theo nhóm viết bài làm ra phiếu học tập của nhóm sau đó nhận xét bài làm của từng nhóm . - GV cho 1 HS đại diện nhóm có kết quả tốt nhất lên bảng trình bày lời giải . - Gợi ý : Hãy viết các bước tương tự như ví dụ 3 ( sgk - 42 ) - Chú ý : Để biến đổi về vế trái là bình phương đ trước hết ta viết dưới dạng 2 lần tích . Giải bài tập 12 ( sgk - 42 c ) Û 0,4 x2 = -1 Û x2 = ( vô lý ) Vậy phương trình đã cho vô gnhiệm d) Û hoặc Û x = 0 hoặc x = Vậy phương trình đã cho có hai nghiệm là x1 = 0 , x2 = e) - 0,4 x2 + 1,2x = 0 Û - 0,4x ( 3x - 1 ) = 0 Û - 0,4 x = 0 hoặc 3x - 1 = 0 Û x = 0 hoặc x = Vậy phương trình có hai nghiệm là x = 0 hoặc x = . bài tập 13 ( sgk – 43 a) x2 + 8x = - 2 Û x2 + 2 . x . 4 + 42 = - 2 + 42 Û x2 + 2 . x. 4 + 42 = -2 + 16 Û ( x + 4 )2 = 14 Û x + 4 = Û x = - 4 Vậy phương trình đã cho có hai nghiệm là : x1 = - 4 + ; x2 = - 4 - b) Û Û ( x + 1)2 = Û x + 1 = Û x = - 1 Vậy phương trình có hai nghiệm là x = - 1 bài tập 14 ( sgk - 43) Giải phương trình : 2x2 + 5x + 2 = 0 . - Chuyển 2 sang vế phải : 2x2 + 5x = - 2 - Chia hai vế của phương trình cho 2 ta được : x2 + . - Tách và thêm vào hai vế của phương trình số để vế trái là một bình phương . Ta được phương trình : hay Suy ra đ x1 = - 0,5 ; x2 = - 2 Vậy phương trình đã cho có hai nghiệm là : x1 = - 0,5 ; x2 = - 2 . IV. Củng cố : - Nêu cách biến đổi phương trình bậc hai đầy đủ về dạng vế trái là một bình phương . - áp dụng ví dụ 3 ( sgk - 42 ) bài tập 14 (sgk - 43 ) giải bài tập sau : Giải phương trình : x2 - 6x + 5 = 0 ( GV cho HS làm bài sau đó lên bảng trình bày lời giải ) Û x2 - 6x = - 5 Û x2 - 2 . x . 3 = - 5 Û x2 - 2.x.3 + 32 = - 5 + 32 Û ( x - 3 )2 = 4 Û x - 3 = hay x1 = 5 ; x2 = 1 . Vậy phương trình có hai nghiệm là x1 = 5 ; x2 = 1 . V. Hướng dẫn - Xem lại các dạng phương trình bậc hai ( khuyết b , khuyết c , đầy đủ ) và cách giải từng dạng phương trình đó . - Xem lại các ví dụ và bài tập đã chữa . Chú ý nắm chắc cách biến đổi phương trình bậc hai dạng đầy đủ về dạng bình phương của vế trái để giải phương trình . - Giải bài tập 17 ( - 40 - SBT ) . Tương tự như bài 12 và 14 ( sgk đã chữa ) ----------o0o---------- Ngày soạn: Ngày dạy: Tiết 53 Công thức nghiệm của phương trình bậc hai A.MụC TIÊU - Học sinh nắm được công thức nghiệm tổng quát của phương trình bậc hai , nhận biết được khi nào thì phương trình có nghiệm , vô nghiệm . - Biết cách áp dụng công thức nghiệm vào giải một số phương trình bậc hai . - Rèn kỹ năng giải phương trình bậc hai bằng công thức nghiệm . B-Chuẩn bị: Thày : - Soạn bài , . Trò : - Nắm được cách biến đổi phương trình bậc hai về dạng vế trái là một bình phương . C-phương pháp: Đàm thoại + Vấn đáp D-Tiến trình bài dạy: I.ổn định tổ chức: 1’ II.Bài cũ. 7’ - Giải phương trình : 3x2 - 5 = 0 b ) 2x2 - 6x + 4= 0 III.Bài mới: Hoạt động của thầ yvà trò Nội dung Hoạt động 1: 15’ - GV teo bảng phụ ghi cách biến đổi giải phương trình bậc hai theo công thức nghiệm . HS đọc sau đó nhận xét . - Nêu cách biến đổi giải phương trình bậc hai dạy đầy đủ . - áp dụng cách biến đổi của ví dụ 3 ( sgk - 42 ) ta có cách biến đổi như thế nào ? Nêu cách biến đổi phương trình trên về dạng vế trái là dạng bình phương ? - Sau khi biến đổi ta được phương trình nào ? - Nêu điều kiện để phương trình có nghiệm ? - GV cho HS làm ? 1 ( sgk ) vào phiếu học tập cá nhân sau đó gọi HS làm ? 1 ( sgk ) . - Nhận xét bài làm của một số HS . - 1 HS đại diện lên bảng điền kết quả . - GV công bố đáp án để HS đối chiếu và sửa chữa nếu sai sót . - Nếu D < 0 thì phương trình (2) có đặc điểm gì ? nhận xét VT vàVP của phương trình (2) và suy ra nhận xét nghiệm của phương trình (1) ? - GV gọi HS nhận xét sau đó chốt vấn đề . - Hãy nêu kết luận về cách giải phương trình bậc hai tổng quát . - GV chốt lại cách giải bằng phần tóm tắt trong sgk - 44 . Hoạt động 2: 15’ - GV ra ví dụ yêu cầu HS đọc đề bài . 15’ - Cho biết các hệ số a , b , c của phương trình trên ? - Để giải phương trình trên theo công thức nghiệm trước hết ta phải làm gì ? - Hãy tính D ? sau đó nhận xét D và tính nghiệm của phương trình trên ? - GV làm mẫu ví dụ và cách trình bày như sgk . - GV ra ? 3 ( sgk ) yêu cầu HS làm theo nhóm ( chia 3 nhóm ) + Nhóm 1 ( a) ; nhóm 2 ( b) nhóm 3 ( c) . + Kiểm tra kết quả chéo ( nhóm 1 đ nhóm 2 đ nhóm 3 đ nhóm 1 ) - GV thu phiếu sau khi HS đã kiểm tra và nhận xét bài làm của HS . - GV chốt lại cách làm . - Gọi 3 HS đại diện lên bảng trình bày lời giải ( mỗi nhóm gọi 1 HS ) . - Em có nhận xét gì về quan hệ giữa hệ số a và c của phương trình phần (c) của ? 3 ( sgk ) và nghiệm của phương trình đó . - Rút ra nhận xét gì về nghiệm của phương trình - GV chốt lại chú ý trong sgk - 45 . 1 : Công thức nghiệm Cho phương trình bậc hai : ax2 + bx + c = 0 ( a ạ 0 ) ( 1) - Biến đổi ( sgk ) (1) Û ( 2) Kí hiệu : D = b2 - 4ac ( đọc là “đenta” ) ? 1 ( sgk ) a) Nếu D > 0 thì từ phương trình (2) suy ra : Do đó , phương trình (1) có hai nghiệm : b) Nếu D = 0 thì từ phương trình (2) suy ra : . Do đó phương trình (1) có nghiệm kép là : ? 2 ( sgk ) - Nếu D < 0 thì phương trình (2) có VT ³ 0 ; VP < 0 đ vô lý đ phương trình (2) vô nghiệm đ phương trình (1) vô gnhiệm . * Tóm tắt ( sgk - 44 ) 2 : áp dụng Ví dụ ( sgk ) Giải phương trình : 3x2 + 5x - 1 = 0 ( a = 3 ; b = 5 ; c = -1 ) Giải + Tính D = b2 - 4ac . Ta có : D = 52 - 4 .3.( -1) = 25 + 12 = 37 + Do D = 37 > 0 , áp dụng công thức nghiệm , phương trình có hai nghiệm phân biệt : ; ? 3 ( sgk ) a) 5x2 - x + 2 = 0 ( a = 5 ; b = - 1 ; c = 2 ) + Tính D = b2 - 4ac . Ta có : D = ( -1)2 - 4.5.2 = 1 - 40 = - 39 . + Do D = - 39 < 0 , áp dụng công thức nghiệm , phương trình đã cho vô nghiệm . b) 4x2 - 4x + 1 = 0 ( a = 4 ; b = - 4 ; c = 1 ) + Tính D = b2 - 4ac . Ta có D = ( - 4)2 - 4.4.1 = 16 - 16 = 0 + Do D = 0 , áp dụng công thức nghiệm , phương trình có nghiệm kép : c) - 3x2 + x + 5 = 0 ( a = - 3 ; b = 1 ; c = 5 ) + Tính D = b2 - 4ac . Ta có : D = 12 - 4.(- 3).5 = 1 + 60 = 61 . + Do D = 61 > 0 , áp dụng công thức nghiệm , phương trình có hai nghiệm phân biệt : * Chú ý ( sgk ) IVCủng cố : 3’ - Nêu công thức nghiệm tổng quát của phương trình bậc hai . - áp dụng công thức nghiệm giải bài tập 15 ( a ) ; 16 ( a) - GV cho HS làm tại lớp sau đó gọi 2 HS lên bảng trình bày bài giải . ( làm như ví dụ và ? 3 ( sgk ) +BT 15 a) 7x2 - 2x + 3 = 0 ( a = 7 ; b = - 2 ; c = 3 ) đ D = ( - 2)2 - 4.7.3 = 4 - 84 = - 80 < 0 đ phương trình đã cho vô gnhiệm . +BT 16 a) 2x2 - 7x + 3 = 0 ( a = 2 ; b = - 7 ; c = 3 ) đ D = ( - 7)2 - 4.2.3 = 49 - 24 = 25 > 0 đ Phương trình đã cho có hai nghiệm phân biệt là : V. Hướng dẫn 4’ - Học thuộc công thức nghiệm của phương trình bậc hai dạng tổng quát . - Xem lại các ví dụ và bài tập đã chữa . Cách làm của từng bài . - áp dụng công thức nghiệm là bài tập 15 ; 16 ( sgk ) - HD : BT 15 ( Là tương tự như phần a đã chữa ) . BT 16 ( Làm tương tự như phần a đã chữa )

File đính kèm:

  • docdai 9 5153.doc
Giáo án liên quan