Giáo án Đại số 9 - Trường THCS Nguyễn Huệ - Tiết 1: Căn bậc hai

A-MỤC TIÊU: Qua bài này học sinh cần:

+ Nắm được định nghĩa, kí hiệu về căn bậc hai số học của số không âm.

+ Biết được liên hệ của phép khai phương với quan hệ thứ tự và dùng liên hệ này để so sánh các số.

B-CHUẨN BỊ CỦA GV& HS:

 GV: Bảng phụ ghi sẵn câu hỏi, bài tập, định nghĩa, định lí.

 HS: Máy tính bỏ túi, bảng phụ nhóm, bút dạ; Ôn tập khái niệm về căn bậc hai (toán 7).

C-LÊN LỚP:

 1/ Bài mới

 

doc2 trang | Chia sẻ: oanh_nt | Lượt xem: 913 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Đại số 9 - Trường THCS Nguyễn Huệ - Tiết 1: Căn bậc hai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết:1 Ngày soạn:8/9/2007 Chương 1: CĂN BẬC HAI. CĂN BẬC BA Tiết 1 - §1. CĂN BẬC HAI A-MỤC TIÊU: Qua bài này học sinh cần: + Nắm được định nghĩa, kí hiệu về căn bậc hai số học của số không âm. + Biết được liên hệ của phép khai phương với quan hệ thứ tự và dùng liên hệ này để so sánh các số. B-CHUẨN BỊ CỦA GV& HS: GV: Bảng phụ ghi sẵn câu hỏi, bài tập, định nghĩa, định lí. HS: Máy tính bỏ túi, bảng phụ nhóm, bút dạ; Ôn tập khái niệm về căn bậc hai (toán 7). C-LÊN LỚP: 1/ Bài mới Hoạt động của thầy và trò Nội dung Hoạt động 1:Căn bậc hai số học: (10ph) GV: nhắc lại về CBH như sgk và yêu cầu HS làm: ?1. Tìm các căn bậc hai của mỗi số sau: a/ 9 b/ c/ 0,25 d/ 2 HS làm ?1. GV: lưu ý 2 cách trả lời: C1 (Dùng đ/nghĩa): CBH của 9 là 3 và – 3. Vì 32 = 9 và (-3)2 = 9. C2 (Dùng cả nhận xét về CBH) 3 là CBH của 9, vì 32 = 9. Mỗi số dương có 2 CBH là 2 số đối nhau nên – 3 cũng là CBH của 9. GV: giới thiệu định nghĩa: (sgk) GV: giới thiệu ví dụ và chú ý như sgk. 1/ Căn bậc hai số học: ?1. Tìm các căn bậc hai của mỗi số sau (sgk) Giải: a/ Căn bậc hai của 9 là 3 và -3. b/ Căn bậc hai của là và - . c/ Căn bậc hai của 0,25 là 0,5 và – 0,5. d/ Căn bậc hai của 2 là và - 2/ Định nghĩa: (Sgk) Ví dụ1: CBHSH của 16 là (= 4) CBHSH của 5 là Chú ý: (Sgk) Hoạt động 2: Luyện tập (10ph) HS làm ?2: ?2 Tìm CBHSH của mỗi số sau: a/ 49 b/64 c/ 81 d/ 1,21 +GV: Giới thiệu phép toán tìm CBHSH của số không âm gọi phép khai phương. +GV: Ta đã biết phép trừ là phép toán ngược của phép cộng, phép chia là phép toán ngược của phép nhân. Vậy phép khai nào? (HS: Phép toán ngược của phép bình phương) + Để khai phương 1 số, người ta có thể dùng dụng cụ gì? (HS: máy tính bỏ túi hay bảng số) + GV: Khi biết CBHSH của 1 số, ta dễ dàng xác định được các CBH của nó. Ví dụ: CBHSH của 49 là 7 nên 49 có 2 CBH phương là phép toán ngược của phép toán là 7 và -7. GV: yêu cầu HS làm ?3 ?3Tìm các CBH của mỗi số sau: a/ 64 b/ 81 c/ 1,21 ?2. Tìm CBHSH của mỗi số sau (sgk) Giải: a/ = 7, vì 7 ≥ 0 và 72 = 49 b/ = 8, vì 8 ≥ 0 và 82 = 64 c/ = 9, vì 9 ≥ 0 và 92 = 81 d/ = 1,1, vì 1,1 ≥ 0 và 1,12 = 1,21 ?3/ Tìm các CBH của mỗi số sau (sgk) Giải: a/ CBHSH của 64 là 8, nên CBH của 64 là 8 và -8. b/ CBHSH của 81 là 9, nên CBH của 81 là 9 và -9. c/ CBHSH của 1,21 là 1,1 nên CBH của 1,21 là 1,1 và -1,1. Hoạt động 3: So sánh các căn bậc hai số học (15ph) So sánh các CBHSH: GV: Cho 2 số a ≥ 0, b ≥0 . Nếu a < b thì sovớinhư thế nào? (HS:Nếu Nếu a < b thì <) GV: Ta có thể chứng minh được điều ngược lại: với a ≥ 0, b ≥0, nếu < thì a < b. Từ đó ta có định lí sau. GV: Đưa định lí trang 5 sgk lên bảng phụ. GV: Cho HS đọc ví dụ 2 (sgk) và yêu cầu HS làm ?4 ?4 So sánh: a/ 4 và b/ và3. GV: Cho HS đọc ví dụ 3 (sgk) và yêu cầu HS làm ?5 ?5 Tìm số x không âm, biết: a/ > 1 b/ < 3 2/ So sánh các căn bậc hai số học: Định lý: Với 2 số a và b không âm, ta có: Ví dụ 2: (Sgk) ?4 Giải: a/ ; b/ = 3 Ví dụ 3: (Sgk) ?5 (sgk) Tìm số x không âm, biết: Giải: a/ 1 = nên > Þ x > 1, (vì x ≥ 0) b/ 3 = nên < Þ x < 9, (vì x ≥ 0) Þ 0 ≤ x ≤ 9 Hoạt động 4: Củng cố – luyện tập (13ph) 1/ Tìm CBHSH của mỗi số say đây rồi suy ra CBH của chúng: -Gọi 1 HS lên bảng tính 2/ So sánh: -Gọi 3 HS lên bảng tính 3/ Tính giá trị gần đúng (làm tròn đến chữ số thập phân thứ ba) các phương trình sau: -Gọi 2 HS lên bảng tính 1a/ CBHSH của 121 là 11, (vì 11 ≥ 0 và 112 = 121); nên 121 có 2 CBH 11 và -11. b/ Tương tự: CBH các số còn lại là: ± 12; ± 13; ± 15; ± 16; ± 18; ± 19; ± 20 2/ So sánh: a/ 2 = b/ 6 = c/ 7 = 3 a/ x2 = 2 b/ x2 = 3 c/ x2 = 3,5 d/ x2 4,12 Þ x = ± Þ x = ± Þ x = ± Þ x = ± Þ x » ± 1,414 Þ x » ± 1,732 Þ x » ± 1,871 Þ x » ± 2,030 2.Dăn dò: (2 phút) Hướng dẫn giải bài tập SGK: Giải tương tự như các ví dụ trong bài học. (trang 7) * Bài tập về nhà: 4; 5 (Sách GK– trang 7) D- RÚT KINH NGHIỆM: ... ... -----------------——&––----------------------

File đính kèm:

  • docT1.doc