A Mục tiêu
ã HS hiểu định nghĩa hình chữ nhật, các tính chất của hình chữ nhật, các dấu hiệu nhận biết một tứ giác là hình chữ nhật.
ã HS biết vẽ một hình chữ nhật, bước đầu biết cách chứng minh một tứ giác là hình chữ nhật. Biết vận dụng các kiến thức về hình chữ nhật áp dụng vào tam giác.
ã Bước đầu biết vận dụng các kiến thức về hình chữ nhật để tính toán, chứng minh.
B Chuẩn bị của GV và HS
ã GV : – Đèn chiếu và các phím giấy trong ghi câu hỏi, bài tập.
– Bảng vẽ sẵn một tứ giác để kiểm tra xem có là hình chữ nhật hay không.
– Thước kẻ, compa, êke, phấn màu, bút dạ.
ã HS : – Ôn tập định nghĩa, tính chất, dấu hiệu nhận biết hình bình hành, hình thang cân. Ôn tập phép đối xứng trục, phép đối xứng tâm.
– Bảng phụ nhóm hoặc phiếu học tập để hoạt động nhóm.
C Tiến trình dạy học
7 trang |
Chia sẻ: oanh_nt | Lượt xem: 1176 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Hình học 8 Tiết 16 Hình chữ nhật, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn.........................Ngày dạy.......................
Tuần...............
Tiết 16 hình chữ nhật
A Mục tiêu
HS hiểu định nghĩa hình chữ nhật, các tính chất của hình chữ nhật, các dấu hiệu nhận biết một tứ giác là hình chữ nhật.
HS biết vẽ một hình chữ nhật, bước đầu biết cách chứng minh một tứ giác là hình chữ nhật. Biết vận dụng các kiến thức về hình chữ nhật áp dụng vào tam giác.
Bước đầu biết vận dụng các kiến thức về hình chữ nhật để tính toán, chứng minh.
B Chuẩn bị của GV và HS
GV : – Đèn chiếu và các phím giấy trong ghi câu hỏi, bài tập.
– Bảng vẽ sẵn một tứ giác để kiểm tra xem có là hình chữ nhật hay không.
– Thước kẻ, compa, êke, phấn màu, bút dạ.
HS : – Ôn tập định nghĩa, tính chất, dấu hiệu nhận biết hình bình hành, hình thang cân. Ôn tập phép đối xứng trục, phép đối xứng tâm.
– Bảng phụ nhóm hoặc phiếu học tập để hoạt động nhóm.
C Tiến trình dạy học
Hoạt động1 Đặt vấn đề
GV đặt vấn đề : Trong các tiết trước chúng ta đã học về hình thang, hình thang cân, hình bình hành, đó là các tứ giác đặc biệt. Ngay ở tiểu học, các em đã biết về hình chữ nhật. Em hãy lấy ví dụ thực tế về hình chữ nhật.
HS trả lời : Ví dụ thực tế về hình chữ nhật như khung cửa sổ chữ nhật, đường viền mặt bàn, quyển sách, quyển vở...
Hoạt động2 Nghiên cứu định nghĩa
HĐ của GV
HĐ của HS
Nội dung
-Vẽ tứ giác ABCD có 4 góc vuông lên bảng
-Hỏi: Tứ giác ABCD có gì đặc biệt?
-Giới thiệu tứ giác ABCD có đặc điểm trên là một hình chữ nhật
-Hỏi: Hình chữ nhật là gì?
-Hỏi: Hình chữ nhật có phải là hình bình hành không? vì sao?
-Hỏi: Hình chữ nhật có phải là hình thang cân không ? vì sao?
Hình chữ nhật là một hình bình hành đặc biệt, cũng là một hình thang cân đặc biệt.
TL:Hình chữ nhật là tứ giác có bốn góc vuông
TL:
hình chữ nhật ABDC là một hình bình hành vì có :
AB // DC (cùng ^ AD)
và AD // BC (cùng ^ DC)
Hoặc
và
Hình chữ nhật ABCD là một hình thang cân vì có : AB // DC (chứng minh trên, và
1Định nghĩa
ABCD là hình chữ nhật
hình chữ nhật ABDC là một hình bình hành
Hình chữ nhật ABCD là một hình thang cân
Hoạt động3: Nghiên cứu tính chất
-Từ khẳng định hình chữ nhật cũng là một hình bình hành, một hình thang cân ta có thể phát biểu gì về tính chất hình chữ nhật
-Vì hình chữ nhật vừa mang tính chất của hình bình hành vùa mang tính chất của hình thang cân nên ta có thể phát biểu như thế nào về đường chéo của hình chữ nhật
_TL: Hình chữ nhật có tất cả các tính chất của hình bình hành và hình thang cân
-TL: Hai đường chéo của hình chữ nhật bằng nhau và cắt nhau tại trung điểm của mỗi đường
2Tính chất
*Hình chữ nhật có tất cả các tính chất của hình bình hành và hình thang cân
*Trong hình chữ nhật 2 đường chéo bằng nhau và cấưt nhau tại trung điểm của mỗi đường
Hoạt động4 :Tìm hiểu dấu hiệu nhận biết
GV : Để nhận biết một tứ giác là hình chữ nhật, ta chỉ cần chứng minh tứ giác có mấy góc vuông ? Vì sao ?
Nếu một tứ giác đã là hình thang cân thì cần thêm điều kiện gì về góc sẽ là hình chữ nhật ? Vì sao
Nếu tứ giác đã là hình bình hành thì cần thêm điều kiện gì sẽ trở thành hình chữ nhật ? Vì sao ?
GV xác nhận có bốn dấu hiệu nhận biết hình chữ nhật (một dấu hiệu đi từ tứ giác, một dấu hiệu đi từ thang cân, hai dấu hiệu đi từ hình bình hành).
a)Tứ giác có hai góc vuông có phải là hình chữ nhật không?
b) Hình thang có một góc vuông có là hình chữ nhật không là hình chữ nhật không ?
c) Tứ giác có hai đường chéo bằng nhau có là hình chữ nhật không ?
HS : Để nhận biết một tứ giác là hình chữ nhật, ta chỉ cần chứng minh tứ giác đó có ba góc vuông, vì tổng các góc của tứ giác là 3600
ị góc thứ tư là 900.
HS : Hình thang cân nếu có thêm một góc vuông sẽ trở thành hình chữ nhật.
Ví dụ : Hình thang cân ABCD
(AB // CD) có ị
(theo định nghĩa thang cân)
ị (vì AB // CD nên hai góc trong cùng phía bù nhau).
HS : Hình bình hành nếu có thêm một góc vuông hoặc có hai đường chéo bằng nhau sẽ trở thành hình chữ nhật.
TL: Không
TL: Không
TL: Không
3Dấu hiệu nhận biết
(SGK-97)
Chứng minh dấu hiệu 4
GT: ABCD là hình bình hành, AC = BD
KL: ABCD là hình chữ nhật
A B
Chứng minh
ABCD là hình bình hành (GT) suy ra : AB//CD và AD// BC
AB //CD và AC = BD (GT)
do đó ABCD là hình thang cân (DHNB)
(1)
mà AD // BC (cmt)
= 1800 (2)
( 2 góc trong cùng phía)
Từ (1) và (2)
900
Vậy hình thang cân ABCD có một góc vuông nên là hình chữ nhật
Hoạt động 4. áp dụng vào tam giác vuông (10 phút)
GV yêu cầu HS hoạt động nhóm
Nửa lớp làm
Nửa lớp làm
GV phát phiếu học tập trên có hình vẽ sẵn (hình 86 hoặc hình 87) cho các nhóm.
GV yêu cầu các nhóm cùng nhau trao đổi thống nhất rồi cử đại diện trình bày bài làm.
– GV hỏi : Hai định lí trên có quan hệ như thế nào với nhau ?
?3
a)Tứ giác ABCD là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường, hình bình hành ABCD có nên là hình chữ nhật.
b) ABCD là hình chữ nhật nên AD = BC
Có
c) Vậy trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
a) Tứ giác ABCD là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường. Hình bình hành ABCD là hình chữ nhật vì có hai đường chéo bằng nhau.
b) ABCD là hình chữ nhật nên
Vậy DABC là tam giác vuông.
c) Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
HS : Hai định lí trên là hai định lí thuận và đảo của nhau.
4.áp dụng vào tam giác vuông
GT: Tam giác ABC có
 = 900, MB = MC
KL: AM =BC
GT: Tam giác ABC có
MB = MC; AM = BC
KL: Tam giác ABC vuông
tại A
*Định lý (SGK- 99)
Hoạt động 5 Củng cố – Luyện tập (4 phút)
Phát biểu định nghĩa hình chữ nhật.
Nêu các dấu hiệu nhận biết hình chữ nhật.
Nêu các tính chất của hình chữ nhật.
Bài tập 60 tr99 SGK.
HS giải nhanh bài tập.
Tam giác vuông ABC có :
BC2 = AB2 + AC2 (đ/l Py-ta-go)
BC2 = 72 + 242
BC2 = 625
ị BC = 25 (cm)
(tính chất tam giác vuông)
Hoạt động 6 Hướng dẫn về nhà (1 phút)
Ôn tập định nghĩa, tính chất, dấu hiệu nhận biết của hình thang cân, hình bình hành, hình chữ nhật và các định lí áp dụng vào tam giác vuông.
Bài tập số 58, 59, 61, 62, 63 tr99, 100 SGK.
File đính kèm:
- Tiet 16 Hinh chu nhat.doc