Giáo án Hình học lớp 10 - Chương I : Đại Cương Về Đường Thẳng Và Mặt Phẳng

I.Mục đích yêu cầu :

 HS nắm được các đối tượng cơ bản, các quan hệ thuộc của HHKG

 Rèn luyện kỹ năng vẽ hình

II.Trọng tâm :

 Cách biễu diễn hình không gian

III.Tiến hành :

 Chuẩn bị : Thước kẻ , phấn màu , sgk

 Các bước : 1.Ổn định - Điểm danh

 2.Kiểm tra bài cũ: Nêu các tiên đề

 3.Bài mới :

 

doc7 trang | Chia sẻ: liennguyen452 | Lượt xem: 930 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án Hình học lớp 10 - Chương I : Đại Cương Về Đường Thẳng Và Mặt Phẳng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài soạn tiết 1– Tuần 1 Ngày soạn :5-9-2004 Ngày giảng :6 –9-2004 Chương I : ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG x1 .CÁC KHÁI NIỆM MỞ ĐẦU I.Mục đích yêu cầu : ± HS nắm được các đối tượng cơ bản, các quan hệ thuộc của HHKG ± Rèn luyện kỹ năng vẽ hình II.Trọng tâm : ± Cách biễu diễn hình không gian III.Tiến hành : ž Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu các tiên đề 3.Bài mới : Phương pháp Nội dung GV: Giới thiệu khái quát về bộ môn HHKG. GV : Giải thích thế nào là điểm ? GV : Thế nào là đường thẳng ? GV : Thế nào là mặt phẳng ? GV : Các đối tượng này chỉ dùng hình ảnh để minh hoạ ! GV Chú ý sử dụng ký hiệu đường thẳng thuộc mặt phẳng Ì hoc sinh hay nhầm lẫn với ký hiệu Ỵ GV Giải thích sự khác nhau để hàm số không nhầm lẫn ! I.CÁC ĐỐI TƯỢNG CƠ BẢN CỦA HHKG: +. Có 3 đối tượng cơ bản : Điểm : Ký hiệu chữ A,B Đường thẳng : Ký hiệu chữ a, b Mặt phẳng : Ký hiệu chữ (a), (b).(P). +. Mô hình : a ° A Đ thẳng a Điểm A a Mp (a) II. CÁC QUAN HỆ LIÊN THUỘC : * Điểm thuộc đường thẳng hay đường thẳng chứa điểm : KH: AỴa hay a'A A ° a AỴa * Điểm thuộc mặt phẳng hay mặt phẳng thẳng chứa điểm . KH : AỴ(a) hay (a)' A °A a * Đường thẳng thuộc mặt phẳng hay mặt phẳng chứa đường thẳng . KH : aÌ (a) hay (a) É(a) a a III.CÁCH BIỄU DIỄN HÌNH HỌC KHÔNG GIAN Khi vẽ hình không gian cần chú ý đến những vấn đề sau Các yếu tố cần giữ nguyên :Đoạn thẳng , đường thẳng, hai đường thẳng song song, cắt nhau, Tỉ số độ dài 2 đoạn thẳng cùng phương. Các quan hệ “thuộc”. Dùng tam giác thường để biễu diễn các loại tam giác, dùng hình bình hành biễu diễn cho hình bình hành, chữ nhật, hình thoi, hình vuông . Dùng nét vẽ liền để biễu diễn cho những đường nhìn thấy, dùng nét vẽ đứt để biễu diễn cho những đường không nhìn thấy. 4) Cũng cố : Cách vẽ hình không gian 5) Dặn dò : Chuẩn bị bài mới, học bài cũ. Bài soạn tiết 2 Tuần 1 Ngày soạn :5-9-2004 Ngày giảng :6-9-2004 x2 .CÁC TIÊN ĐỀ CỦA HHKG I.Mục đích yêu cầu : ± HS nắm được các tiên đề và các định lý suy ra từ tiên đề. ± Rèn luyện kỹ năng vẽ hình II.Trïng tâm : ± Các tiên đề hình học không gian III.Tiến hành : ž Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu các tiên đề 3.Bài mới : Phương pháp Nội dung A. .B .C A B a Gv : Nêu cách xác định Mp(A,d)? Chọn 2 điểm °A Gv: Chọn 2 điểm trên 2 đường thẳng I. CÁC TIÊN ĐỀ : TĐ1 : (SGK) TT : A, B, C không thẳng hàng à $! mp(ABC) TĐ2: (SGK) TT : d'AỴ(a) và d'BỴ(a) è " CỴd : CỴ(a) TĐ3: (SGK) TT : (a) ' A và (b)'A è$B: BỴ(a) và BỴ(b) TĐ4: (SGK) TT : Có ít nhất 4 điểm A,B,Câu,D không đồng phẳng. II. CÁC HỆ QUẢ CỦA TIÊN ĐỀ : ĐL1: (SGK) TT : (a) 'A và (b)'A è$a : aÌ (a) và aÌ (b) ĐL2: (SGK) TT : Ạd è $! mp(A,d) ĐL3 (SGK) TT : a cắt b è $! mp(a,b) III. VÍ DỤ : Trong mp(a) cho tứ giác ABCD có AB không // CD. Điểm SÏ(a) . Xác định giao tuyến của 2 mặt phẳng (SAC)và (SBD) Xác định giao tuyến của 2 mp(SAB) và (SCD) 4) Cũng cố : 4 tiên đề, 3 hệ quả 5) Dặn dò : Làm bài tập 1à5, học bài cũ. Rút kinh nghiệm giờ dạy : ................................................................................................................................................................... .................................................................................................................................................................... Bài soạn tiết 3,4 – Tuần2 Ngày soạn 12-9-2004 Ngày giảng 13-9-2004 BÀI TẬP CÁC TIÊN ĐỀ CỦA HHKG I.Mục đích yêu cầu : ± HS nắm được các dạng toán : Tìm giao tuyến, tìm giao điểm. ± Rèn luyện kỹ năng vẽ hình II.Trïng tâm : ± Tìm giao tuyến của hai mặt phẳng III.Tiến hành : Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu các tiên đề 3.Bài mới : Phương pháp Nội dung GV Cho hs đọc từng mệnh đề và giải thích đúng sai? Gv Chú ý cho hs các từ ngữ trong mđ, chú ý từ “ Phân biệt “ a b c a b c Bài 1 : Mệnh đề đúng Mệnh đề sai Mệnh đề đúng Mệnh đề sai Bài 2 : Nếu ba điểm cắt nhau không trùng với nhau thì ba đường thẳng sẽ cùng thuộc một mặt phẳng . Nếu ba đường thẳng đồng qui thì chúng có thể không đồng phẳng . Bài 3 :Cho 4 điểm A,B,C,D không đồng phẳng . M,N là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD. Tìm giao điểm của CD với mp(MNP) Tìm giao tuyến của 2 mp(MNP) và (ACD). Bài 4: Cho 4 điểm A,B,C,D không đồng phẳng . Gọi I, K lần lượt là trung điểm của AD và BC. a)Tìm giao tuyến của 2 mp(IBC) và mp(KAD) b) Gọi M, N thuộc AB,AC . Tìm giao tuyến của 2 mp(IBC) và (DMN). Bài 5: Cho tứ g ABCD nằm trong mp(a) có AB không // CD và S Ï (a), M là trung điểm của SC. Tìm N = SDÇ(MAB) Tìm giao tuyến (MNP)Ç(ACD) 4) Cũng cố : 4 tiên đề, 3 hệ quả 5) Dặn dò : Làm bài tập 1à5, học bài cũ. Rút kinh nghiệm giờ dạy : ........................................................................................................... Bài soạn tiết 5– Tuần 3 Ngày soạn 19-9-2004. Ngày giảng 20-9-2004 x3 . HÌNH CHÓP. I.Mục đích yêu cầu : ± HS nắm được định nghĩa và sự tương giao của mặt phẳng và hình chóp. ± Rèn luyện kỹ năng tìm thiết diện II.Trọng tâm : ± Tìm thiết diện III.Tiến hành : ž Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu các tiên đề 3.Bài mới : Phương pháp Nội dung S A D I . ĐỊNH NGHĨA : Hình chóp là một hình có nhiều mặt trong đó có một mặt là đa giác gọi là mặt đáy, những mặt còn lại gọi là mặt bên là các tam giác có chung một đỉnh. Ví dụ : Hình chóp SABCD có mặt đáy là tứ giác ABCD , các tam giác SAB, SBC, SCD, SDA có chung đỉnh S. C B S M N P A B Điểm S gọi là đỉnh của hình chóp. AB, BC, CD, DA gọi là cạnh đáy. SA, SB, SC, SD cạnh bên. II. PHÂN LOẠI HÌNH CHÓP : Phân chia theo số cạnh của đa giác đáy : Nếu đáy là tam giác thì gọi là hình chóp tam giác còn gọi là tứ diện. Nếu đáy là tứ giác gọi là hình chóp tứ giác Nếu tứ diện có 4 mặt là các tam giác đều thì gọi là tứ diện đều III. SỰ TƯƠNG GIAO CỦA HÌNH CHÓP VÀ MẶT PHẲNG : Cho hình chóp và một mặt phẳng (a) . Nếu mặt phẳng (a) cắt các mặt của hình chóp theo các đoạn giao tuyến tạo nên đa giác thì ta có thiết diện của mp(a) với hình chóp. Thiết diện là đa giác có các cạnh là các đoạn giao tuyến. PHƯƠNG PHÁP TÌM THIẾT DIỆN : Tìm tất cả các đoạn giao tuyến nếu có của mặc phẳng(a) với tất cả các mặt của hình chóp C IV. VÍ DỤ : Cho hình chóp tứ giác SABCD. Điểm C’ nằm trên cạnh SC. Tìm thiết diện của mp(ABC’) với hình chóp. 4) Cũng cố : Cách tìm thiết diện của mp với hình chóp. 5) Dặn dò : Bài tập : 1 ® 4 (SGK) Rút kinh nghiệm giờ dạy : ................................................................................................................................................................... .................................................................................................................................................................... Bài soạn tiết 6– Tuần 3 Ngày soạn 19-9-2004 Ngày giảng .20-9-2004 Bài tập HÌNH CHÓP. I.Mục đích yêu cầu : ± HS nắm được định nghĩa và sự tương giao của mặt phẳng và hình chóp. ± Rèn luyện kỹ năng tìm thiết diện II.Trọng tâm : ± Tìm thiết diện III.Tiến hành : ž Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu cách tìm thiết diện? 3.Bài mới : Phương pháp Nội dung Gv rèn học sinh cách vẽ hình . Gv : Nêu phương pháp tìm thiết diện của mặc phẳng với hình chóp ? Gv : Nêu phương pháp tìm giao điểm của đường thẳng và mặt phẳng ? Thiết diện của 1 mặt phẳng với tứ diện có thể là tam giác , tứ giác , ngũ giác được không ? Cho tứ diện ABCD . Gọi M, N lần lượt là trung điểm các cạnh AB và CD. P là điểm thuộc cạnh AD nhưng không ở trung điểm. Tìm thiết diện của tứ diện với mặt phẳng (MNP) Cho hình chóp S.ABCD có đáy là 1 hình bình hành. Trong mặt phẳng ABCD vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành . Gọi C’ là điểm nằm trên cạnh SC. Tìm thiết diện của hình chóp cắt bởi mặt phẳng (d, C’) Cho hc S.ABCD. Gọi M là 1 điểm thuộc miền trong tam giác SCD. Tìm giao tuyến của 2 mặt phẳng (SBM) và (SAC) Tìm giao điểm của đường thẳng BM và mặt phẳng (SAC) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (ABM) 4) Cũng cố : Cách tìm thiết diện của mp với hình chóp. 5) Dặn dò : Bài tập : 1 ® 4 (SGK) Rút kinh nghiệm giờ dạy : ................................................................................................................................................................... .................................................................................................................................................................... Bài soạn tiết 7– Tuần 4 Ngày soạn 26-9-2004. Ngày giảng 27 – 9 - 2004 BÀI TẬP ÔN CHƯƠNG I. I.Mục đích yêu cầu : ± Học sinh giải được các dạng toán : Tìm giao tuyến, tìm giao điểm của đường thẳng và mặt phẳng, tìm thiết diện. ± Rèn luyện kỹ năng tìm thiết diện II.Trọng tâm : ± Tìm thiết diện III.Tiến hành : ž Chuẩn bị : Thước kẻ , phấn màu , sgk ž Các bước : 1.Ổn định - Điểm danh 2.Kiểm tra bài cũ: Nêu các tiên đề 3.Bài mới : Phương pháp Nội dung Giáo viên yêu cầu hàm số giải Hs tập vẽ hình GV : Hỏi : Hãy nêu phương pháp CM 3 điểm thẳng hàng ? GV Hướng dẫn phương pháp chứng minh phản chứng CM A èB Giả sử A sai Chỉ ra B sai KL AèB đúng GV Nhấn mạnh ph/ph tìm tất cả các đoạn giao tuyến Cho mp(a) và 3 điểm A, B, C không thẳng hàng và không nằm trên mp(a) CM nếu các đường thẳng AB, BC CA đều cắt mp(a) thì 3 giao điểm đó thẳng hàng. CMR nếu 3 đường thẳng không cùng nằm trên 1 mặt phẳng và đôi một cắt nhau thì 3 đường thẳng đó đồng qui Cho 2 hình thang ( không bình hành ) ABCD và ABEF có chung đáy lớn AB và không cùng nằm trong cùng một mặt phẳng . Xác định giao tuyến của các cặp mp sau : * (ACE) và (BDF) * (BCE) và (ADF) Lấy điểm M trên đoạn DF. Tìm giao điểm của đường thẳng AM với mp(BCE). Chứng minh 2 đường thẳng AC và BF là 2 đường thẳng không cắt nhau. 4) Cũng cố : Cách tìm giao tuyến , giao điểm , thiết diện của mp với hình chóp. 5) Dặn dò : Học bài, ôn chương I Rút kinh nghiệm giờ dạy : ................................................................................................................................................................... .................................................................................................................................................................... KIỂM TRA 15’ Đề bài : Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Điểm M là trung điểm của SC. Tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD) Tìm giao điểm của AM với mặt phẳng (SBD) Nêu thiết diện của mặt phẳng (ABM) với hình chóp. Thang điểm : + Hình vẽ 1đ + Câu a) 3đ + Câu b) 3đ + Câu c) 3đ

File đính kèm:

  • docHINH-KGChuong1.doc