Giáo án lớp 12 môn Đại số - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (tiếp)

Kiến thức:

 Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm.

 Nắm được qui tắc xét tính đơn điệu của hàm số.

 Kĩ năng:

 Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó.

 

doc94 trang | Chia sẻ: manphan | Lượt xem: 861 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Đại số - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số (tiếp), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ Tiết dạy: 01 Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở lớp 11. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Tính đạo hàm của các hàm số: a), b). Xét dấu đạo hàm của các hàm số đó? Đ. a) b) . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 10' Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số · Dựa vào KTBC, cho HS nhận xét dựa vào đồ thị của các hàm số. H1. Hãy chỉ ra các khoảng đồng biến, nghịch biến của các hàm số đã cho? H2. Nhắc lại định nghĩa tính đơn điệu của hàm số? H3. Nhắc lại phương pháp xét tính đơn điệu của hàm số đã biết? H4. Nhận xét mối liên hệ giữa đồ thị của hàm số và tính đơn điệu của hàm số? · GV hướng dẫn HS nêu nhận xét về đồ thị của hàm số. Đ1. đồng biến trên (–∞; 0), nghịch biến trên (0; +∞) nghịch biến trên (–∞; 0), (0; +∞) Đ4. y¢ > 0 Þ HS đồng biến y¢ < 0 Þ HS nghịch biến x O y x O y I. Tính đơn điệu của hàm số 1. Nhắc lại định nghĩa Giả sử hàm số y = f(x) xác định trên K. · y = f(x) đồng biến trên K Û "x1, x2 Î K: x1 < x2 Þ f(x1) < f(x2) Û , "x1,x2Î K (x1 ¹ x2) · y = f(x) nghịch biến trên K Û "x1, x2 Î K: x1 < x2 Þ f(x1) > f(x2) Û , "x1,x2Î K (x1 ¹ x2) Nhận xét: · Đồ thị của hàm số đồng biến trên K là một đường đi lên từ trái sang phải. · Đồ thị của hàm số nghịch biến trên K là một đường đi xuống từ trái sang phải. 7' Hoạt động 2: Tìm hiểu mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm · Dựa vào nhận xét trên, GV nêu định lí và giải thích. 2. Tính đơn điệu và dấu của đạo hàm: Định lí: Cho hàm số y = f(x) có đạo hàm trên K. · Nếu f '(x) > 0, thì y = f(x) đồng biến trên K. · Nếu f '(x) < 0, thì y = f(x) nghịch biến trên K. Chú ý: Nếu f ¢(x) = 0, thì f(x) không đổi trên K. 15' Hoạt động 3: Áp dụng xét tính đơn điệu của hàm số · Hướng dẫn HS thực hiện. H1. Tính y¢ và xét dấu y¢ ? · HS thực hiện theo sự hướng dẫn của GV. Đ1. a) y¢ = 2 > 0, "x b) y¢ = 2x – 2 VD1: Tìm các khoảng đơn điệu của hàm số: a) b) 5' Hoạt động 4: Củng cố Nhấn mạnh: – Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số. 4. BÀI TẬP VỀ NHÀ: Bài 1, 2 SGK. Đọc tiếp bài "Sự đồng biến, nghịch biến của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 02 Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ (tt) I. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở lớp 11. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Tìm các khoảng đơn điệu của hàm số ? Đ. Hàm số đồng biến trong khoảng (0; +∞), nghịch biến trong khoảng (–∞; 0). 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 10' Hoạt động 1: Tìm hiểu thêm về mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số · GV nêu định lí mở rộng và giải thích thông qua VD. I. Tính đơn điệu của hàm số 2. Tính đơn điệu và dấu của đạo hàm Chú ý: Giả sử y = f(x) có đạo hàm trên K. Nếu f ¢(x) ³ 0 (f¢(x) £ 0), "x Î K và f¢(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K. VD2: Tìm các khoảng đơn điệu của hàm số y = x3. 7' Hoạt động 2: Tìm hiểu qui tắc xét tính đơn điệu của hàm số · GV hướng dẫn rút ra qui tắc xét tính đơn điệu của hàm số. II. Qui tắc xét tính đơn điệu của hàm số 1. Qui tắc 1) Tìm tập xác định. 2) Tính f¢(x). Tìm các điểm xi (i = 1, 2, , n) mà tại đó đạo hàm bằng 0 hoặc không xác định. 3) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên. 4) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số. 15' Hoạt động 3: Áp dụng xét tính đơn điệu của hàm số · Chia nhóm thực hiện và gọi HS lên bảng. · GV hướng dẫn xét hàm số: trên . H1. Tính f¢(x) ? · Các nhóm thực hiện yêu cầu. a) đồng biến (–¥; –1), (2; +¥) nghịch biến (–1; 2) b) đồng biến (–¥; –1), (–1; +¥) Đ1. f¢(x) = 1 – cosx ³ 0 (f¢(x) = 0 Û x = 0) Þ f(x) đồng biến trên Þ với ta có: > f(0) = 0 2. Áp dụng VD3: Tìm các khoảng đơn điệu của các hàm số sau: a) b) VD4: Chứng minh: trên khoảng . 5' Hoạt động 4: Củng cố Nhấn mạnh: – Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số. – Qui tắc xét tính đơn điệu của hàm số. – Ứng dụng việc xét tính đơn điệu để chứng minh bất đẳng thức. 4. BÀI TẬP VỀ NHÀ: Bài 3, 4, 5 SGK. IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––-------------------------- Tiết dạy: 03 Bài 1: BÀI TẬP SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mối liên hệ giữa khái niệm này với đạo hàm. Nắm được qui tắc xét tính đơn điệu của hàm số. Kĩ năng: Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hệ thống bài tập. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (Lồng vào quá trình luyện tập) H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Xét tính đơn điệu của hàm số H1. Nêu các bước xét tính đơn điệu của hàm số? H2. Nhắc lại một số qui tắc xét dấu đã biết? Đ1. a) ĐB: , NB: b) ĐB: , NB: , c) ĐB: , NB: , d) ĐB: e) NB: f) ĐB: , NB: 1. Xét sự đồng biến, nghịch biến của hàm sô: a) b) c) d) e) f) 7' Hoạt động 2: Xét tính đơn điệu của hàm số trên một khoảng H1. Nêu các bước xét tính đơn điệu của hàm số? Đ1. a) D = R y¢ = 0 Û x = ± 1 b) D = [0; 2] y¢ = 0 Û x = 1 2. Chứng minh hàm số đồng biến, nghịch biến trên khoảng được chỉ ra: a) , ĐB: , NB: b) , ĐB: , NB: 15' Hoạt động 3: Vận dụng tính đơn điệu của hàm số · GV hướng dẫn cách vận dụng tính đơn điệu để chứng minh bất đẳng thức. – Xác lập hàm số. – Xét tính đơn điệu của hàm số trên miền thích hợp. · a) . y¢ = 0 Û x = 0 Þ y đồng biến trên Þ y¢(x) > y¢(0) với b) y¢ = 0 Û x = 0 Þ y đồng biến trên Þ y¢(x) > y¢(0) với 3. Chứng minh các bất đẳng thức sau: a) . b) . 5' Hoạt động 4: Củng cố Nhấn mạnh: – Qui tắc xét tính đơn điệu của hàm số. – Ứng dụng việc xét tính đơn điệu để chứng minh bất đẳng thức. 4. BÀI TẬP VỀ NHÀ: Bài tập thêm. Đọc trước bài "Cực trị của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 04 Bài 2: CỰC TRỊ CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Mô tả được các điều kiện đủ để hàm số có điểm cực trị. Kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Xét tính đơn điệu của hàm số: ? Đ. ĐB: , NB: . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 10' Hoạt động 1: Tìm hiểu khái niệm cực trị của hàm số · Dựa vào KTBC, GV giới thiệu khái niệm CĐ, CT của hàm số. · Nhấn mạnh: khái niệm cực trị mang tính chất "địa phương". H1. Xét tính đơn điệu của hàm số trên các khoảng bên trái, bên phải điểm CĐ? Đ1. Bên trái: hàm số ĐB Þ f¢(x)³ 0 Bên phái: h.số NB Þ f¢(x) £ 0. I. Khái niệm cực đại, cực tiểu: Định nghĩa: Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) và điểm x0 Î (a; b). a) f(x) đạt CĐ tại x0 Û $h > 0, f(x) < f(x0), "x Î S(x0, h)\ {x0}. b) f(x) đạt CT tại x0 Û $h > 0, f(x) > f(x0), "x Î S(x0, h)\ {x0}. Chú ý: a) Điểm cực trị của hàm số; Giá trị cực trị của hàm số; Điểm cực trị của đồ thị hàm số. b) Nếu y = f(x) có đạo hàm trên (a; b) và đạt cực trị tại x0 Î (a; b) thì f¢(x0) = 0. 10' Hoạt động 2: Tìm hiểu điều kiện đủ để hàm số có cực trị · GV phác hoạ đồ thị của các hàm số: a) b) Từ đó cho HS nhận xét mối liên hệ giữa dấu của đạo hàm và sự tồn tại cực trị của hàm số. · GV hướng dẫn thông qua việc xét hàm số . · a) không có cực trị. b) có CĐ, CT. II. Điều kiện đủ để hàm số có cực trị: Định lí 1: Giả sử hàm số y = f(x) liên tục trên khoảng K = và có đạo hàm trên K hoặc K \ {x0} (h > 0). a) f¢(x) > 0 trên , f¢(x) < 0 trên thì x0 là một điểm CĐ của f(x). b) f¢(x) < 0 trên , f¢(x) > 0 trên thì x0 là một điểm CT của f(x). Nhận xét: Hàm số có thể đạt cực trị tại những điểm mà tại đó đạo hàm không xác định. 15' Hoạt động 3: Áp dụng tìm điểm cực trị của hàm số · GV hướng dẫn các bước thực hiện. H1. – Tìm tập xác định. – Tìm y¢. – Tìm điểm mà y¢ = 0 hoặc không tồn tại. – Lập bảng biến thiên. – Dựa vào bảng biến thiên để kết luận. Đ1. a) D = R y¢ = –2x; y¢ = 0 Û x = 0 Điểm CĐ: (0; 1) b) D = R y¢ = ; y¢ = 0 Û Điểm CĐ: , Điểm CT: c) D = R \ {–1} Þ Hàm số không có cực trị. VD1: Tìm các điểm cực trị của hàm sô: a) b) c) 5' Hoạt động 4: Củng cố Nhấn mạnh: – Khái niệm cực trị của hàm số. – Điều kiện cần và điều kiện đủ để hàm số có cực trị. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 1, 3 SGK. Đọc tiếp bài "Cực trị của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 05 Bài 2: CỰC TRỊ CỦA HÀM SỐ (tt) I. MỤC TIÊU: Kiến thức: Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Mô tả được các điều kiện đủ để hàm số có điểm cực trị. Kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Tìm điểm cực trị của hàm số: ? Đ. Điểm CĐ: (–1; 3); Điểm CT: (1; –1). 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 5' Hoạt động 1: Tìm hiểu Qui tắc tìm cực trị của hàm số · Dựa vào KTBC, GV cho HS nhận xét, nêu lên qui tắc tìm cực trị của hàm số. · HS nêu qui tắc. III. Quy tắc tìm cực trị: Qui tắc 1: 1) Tìm tập xác định. 2) Tính f¢(x). Tìm các điểm tại đó f¢(x) = 0 hoặc f¢(x) không xác định. 3) Lập bảng biến thiên. 4) Từ bảng biến thiên suy ra các điểm cực trị. 15' Hoạt động 2: Áp dụng qui tắc 1 tìm cực trị của hàm số · Cho các nhóm thực hiện. · Các nhóm thảo luận và trình bày. a) CĐ: (–1; 3); CT: (1; –1). b) CĐ: (0; 2); CT: , c) Không có cực trị d) CĐ: (–2; –3); CT: (0; 1) VD1: Tìm các điểm cực trị của hàm số: a) b) c) d) 5' Hoạt động 3: Tìm hiểu qui tắc 2 để tìm cực trị của hàm số · GV nêu định lí 2 và giải thích. H1. Dựa vào định lí 2, hãy nêu qui tắc 2 để tìm cực trị của hàm số? Đ1. HS phát biểu. Định lí 2: Giả sử y = f(x) có đạo hàm cấp 2 trong (h > 0). a) Nếu f¢(x0) = 0, f¢¢(x0) > 0 thì x0 là điểm cực tiểu. b) Nếu f¢(x0) = 0, f¢¢(x0) < 0 thì x0 là điểm cực đại. Qui tắc 2: 1) Tìm tập xác định. 2) Tính f¢(x). Giải phương trình f¢(x) = 0 và kí hiệu xi là nghiệm 3) Tìm f¢¢(x) và tính f¢¢(xi). 4) Dựa vào dấu của f¢¢(xi) suy ra tính chất cực trị của xi. 10' Hoạt động 4: Áp dụng qui tắc 2 để tìm cực trị của hàm số · Cho các nhóm thực hiện. · Các nhóm thảo luận và trình bày. a) CĐ: (0; 6) CT: (–2; 2), (2; 2) b) CĐ: CT: VD2: Tìm cực trị của hàm số: a) b) 5' Hoạt động 5: Củng cố Nhấn mạnh: – Các qui tắc để tìm cực trị của hàm số. – Nhận xét qui tắc nên dùng ứng với từng loại hàm số. Câu hỏi: Đối với các hàm số sau hãy chọn phương án đúng: 1) Chỉ có CĐ. 2) Chỉ có CT. 3) Không có cực trị. 4) Có CĐ và CT. a) b) c) d) a) Có CĐ và CT b) Không có CĐ và CT c) Có CĐ và CT d) Không có CĐ và CT · Đối với các hàm đa thức bậc cao, hàm lượng giác, nên dùng qui tắc 2. · Đối với các hàm không có đạo hàm không thể sử dụng qui tắc 2. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 2, 4, 5, 6 SGK. IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 06 Bài 2: BÀI TẬP CỰC TRỊ CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Mô tả được các điều kiện đủ để hàm số có điểm cực trị. Kĩ năng: Sử dụng thành thạo các điều kiện đủ để tìm cực trị. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hệ thống bài tập. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (Lồng vào quá trình luyện tập) H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Sử dụng qui tắc 1 để tìm cực trị của hàm số · Cho các nhóm thực hiện. H1. Nêu các bước tìm điểm cực trị của hàm số theo qui tắc 1? · Các nhóm thảo luận và trình bày. Đ1. a) CĐ: (–3; 71); CT: (2; –54) b) CT: (0; –3) c) CĐ: (–1; –2); CT: (1; 2) d) CT: 1. Tìm các điểm cực trị của hàm số: a) b) c) d) 15' Hoạt động 2: Sử dụng qui tắc 2 để tìm cực trị của hàm số · Cho các nhóm thực hiện. H1. Nêu các bước tìm điểm cực trị của hàm số theo qui tắc 2? · Các nhóm thảo luận và trình bày. Đ1. a) CĐ: (0; 1); CT: (±1; 0) b) CĐ: CT: c) CĐ: CT: d) CĐ: x = –1; CT: x = 1 2. Tìm các điểm cực trị của hàm số: a) b) c) d) 10' Hoạt động 3: Vận dụng cực trị của hàm số để giải toán H1. Nêu điều kiện để hàm số luôn có một CĐ và một CT? · Hướng dẫn HS phân tích yêu cầu bài toán. H2. Nếu x = 2 là điểm CĐ thì y¢(2) phải thoả mãn điều kiện gì? H3. Kiểm tra với các giá trị m vừa tìm được? Đ1. Phương trình y¢ = 0 có 2 nghiệm phân biệt. Û = 0 luôn có 2 nghiệm phân biệt. Û D¢ = m2 + 6 > 0, "m Đ2. y¢(2) = 0 Û Đ3. m = –1: không thoả mãn m = –3: thoả mãn 3. Chứng minh rằng với mọi m, hàm số luôn có một điểm CĐ và một điểm CT. 4. Xác định giá trị của m để hàm số đạt CĐ tại x = 2. 3' Hoạt động 4: Củng cố Nhấn mạnh: – Điều kiện cần, điều kiện đủ để hàm số có cực trị. – Các qui tắc tìm cực trị của hàm số. 4. BÀI TẬP VỀ NHÀ: Làm các bài tập còn lại trong SGK và bài tập thêm. Đọc trước bài "Giá trị lớn nhất và giá trị nhỏ nhất của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 07 Bài 3: GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số. Nắm được qui tắc tìm GTLN, GTNN của hàm số. Kĩ năng: Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng. Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Cho hàm số . Hãy tìm cực trị của hàm số. So sánh giá trị cực trị với ? Đ. , ; , . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Tìm hiểu khái niệm GTLN, GTNN của hàm số · Từ KTBC, GV dẫn dắt đến khái niệm GTLN, GTNN của hàm số. · GV cho HS nhắc lại định nghĩa GTLN, GTNN của hàm số. · GV hướng dẫn HS thực hiện. H1. Lập bảng biến thiên của hàm số ? · Các nhóm thảo luận và trình bày. Đ1. Þ f(x) không có GTLN trên (0;+∞) I. Định nghĩa: Cho hàm số y = f(x) xác định trên D. a) b) VD1: Tìm GTLN, GTNN của hàm số sau trên khoảng (0; +∞) 10' Hoạt động 2: Tìm hiểu cách tìm GTLN, GTNN của hàm số trên một khoảng · GV hướng dãn cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. H1. Lập bảng biến thiên của hàm số ? Đ1. Þ không có GTLN. II. Cách tính GTLN, GTNN của hàm số liên tục trên một khoảng: Dựa vào bảng biến thiên để xác định GTLN, GTNN của hàm số liên tục trên một khoảng. VD2: Tính GTLN, GTNN của hàm số . 10' Hoạt động 3: Vận dụng cách tìm GTLN, GTNN của hàm số để giải toán · GV hướng dẫn cách giải quyết bài toán. H1. Tính thể tích khối hộp ? H2. Nêu yêu cầu bài toán ? H3. Lập bảng biến thiên ? Đ1. Đ2. Tìm x0 Î sao cho V(x0) có GTLN. Đ3. Þ VD3: Cho một tấm nhôm hình vuông cạnh a. Người ta cắt ở bốn góc bốn hình vuông bằng nhau, rồi gập tấm nhôm lại thành một cái hộp không nắp. Tính cạnh của các hình vuông bị cắt sao cho thể tích của khối hộp là lớn nhất. 3' Hoạt động 4: Củng cố Nhấn mạnh: – Cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 4, 5 SGK. Đọc tiếp bài "GTLN, GTNN của hàm số". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 08 Bài 3: GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ (tt) I. MỤC TIÊU: Kiến thức: Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số. Nắm được qui tắc tìm GTLN, GTNN của hàm số. Kĩ năng: Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng. Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về cực trị và GTLN, GTNN của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Tìm GTLN, GTNN của hàm số ? Đ. ; không có GTNN. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 12' Hoạt động 1: Tìm hiểu cách tìm GTLN, GTNN của hàm số liên tục trên một đoạn · Từ KTBC, GV đặt vấn đề đối với hàm số liên tục trên một đoạn. · GV giới thiệu định lí. · GV cho HS xét một số VD. Từ đó dẫn dắt đến qui tắc tìm GTLN, GTNN. VD: Tìm GTLN, GTNN của hàm số trên đoạn được chỉ ra: a) [1; 3] b) [–1; 2] a) b) II. Cách tính GTLN, GTNN của hàm số trên một đoạn: 1. Định lí Mọi hàm số liên tục trên một đoạn đều có GTLN và GTNN trên đoạn đó. 2. Qui tắc tìm GTLN, GTNN của hàm số liên tục trên đoạn [a; b] · Tìm các điểm x1, x2, , xn trên khoảng (a; b), tại đó f¢(x) bằng 0 hoặc không xác định. · Tính f(a), f(x1), , f(xn), f(b). · Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. 25' Hoạt động 2: Vận dụng cách tìm GTLN, GTNN của hàm số để giải toán · Cho các nhóm thực hiện. · Chú ý các trường hợp khác nhau. · Các nhóm thảo luận và trình bày. ; a) y(–1) = 1; y(2) = 4 Þ b) y(–1) = 1; y(0) = 2 Þ c) y(0) = 2; y(2) = 4 Þ d) y(2) = 4; y(3) = 17 Þ VD1: Tìm GTLN, GTNN của hàm số trên đoạn: a) [–1; 2] b) [–1; 0] c) [0; 2] d) [2; 3] 3' Hoạt động 3: Củng cố Nhấn mạnh: – Cách tìm GTLN, GTNN của hàm số liên tục trên một đoạn. – So sánh với cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. 4. BÀI TẬP VỀ NHÀ: Làm bài tập 1, 2, 3 SGK. IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 09 Bài 3: BÀI TẬP GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ I. MỤC TIÊU: Kiến thức: Củng cố: Các khái niệm GTLN, GTNN của hàm số trên một tập hợp số. Các qui tắc tìm GTLN, GTNN của hàm số. Kĩ năng: Tìm được GTLN, GTNN của hàm số trên một đoạn, một khoảng. Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hệ thống bài tập. Học sinh: SGK, vở ghi. Ôn tập các kiến thức đã học về cực trị và GTLN, GTNN của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (Lồng vào quá trình luyện tập) H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Luyện tập tìm GTLN, GTNN của hàm số liên tục trên một đoạn H1. Nêu các bước thực hiện ? Đ1. a) b) c) d) 1. Tính GTLN, GTNN của hàm số: a) trên các đoạn [–4; 4], [0; 5]. b) trên các đoạn [0; 3], [2; 5] c) trên các đoạn [2; 4], [–3; –2]. d) trên [–1; 1]. 15' Hoạt động 2: Luyện tập tìm GTLN, GTNN của hàm số liên tục trên một khoảng H1. Nêu các bước thực hiện ? Đ1. a) ; không có GTNN b) ; không có GTNN c) ; không có GTLN d) ;không có GTLN 2. Tìm GTLN, GTNN của các hàm số sau: a) b) c) d) 10' Hoạt động 3: Vận dụng GTLN, GTNN để giải toán · Hướng dẫn HS cách phân tích bài toán. H1. Xác định hàm số ? Tìm GTLN, GTNN của hàm số ? Đ1. 3) S = x (8 – x), (0 < x < 8) Þ Để S lớn nhất thì x = 4. Þ maxS = 16 4) P = Þ Để P nhỏ nhất thì x = Þ minP = 3. Trong số các hình chữ nhật có cùng chu vi 16 cm, hãy tìm hình chữ nhật có diện tích lớn nhất. 4. Trong số các hình chữ nhật cùng có diện tích 48 cm2, hãy tìm hình chữ nhật có chu vi nhỏ nhất. 5' Hoạt động 4: Củng cố Nhấn mạnh: – Các cách tìm GTLN, GTNN của hàm số. – So sánh với cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng. – Cách vận dụng GTLN, GTNN để giải toán. 4. BÀI TẬP VỀ NHÀ: Đọc trước bài "Đường tiệm cận". IV. RÚT KINH NGHIỆM, BỔ SUNG: Tiết dạy: 10 Bài 4: ĐƯỜNG TIỆM CẬN I. MỤC TIÊU: Kiến thức: Biết khái niệm đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. Kĩ năng: Tìm được đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. Củng cố cách tìm giới hạn, giới hạn một bên của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập cách tính giới hạn của hàm số. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (5') H. Cho hàm số . Tính các giới hạn: ? Đ. , . 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung 15' Hoạt động 1: Tìm hiểu khái niệm đường tiệm cận ngang của đồ thị hàm số · Dẫn dắt từ VD để hình thành khái niệm đường tiệm cận ngang. VD: Cho hàm số (C). Nhận xét khoảng cách từ điểm M(x; y) Î (C) đến đường thẳng D: y = –1 khi x ® ±∞. H1. Tính khoảng cách từ M đến đường thẳng D ? H2. Nhận xét khoảng cách đó khi x ® +∞ ? · GV giới thiệu khái niệm đường tiệm cận ngang. Đ1. d(M, D) = Đ2. dần tới 0 khi x ® +∞. I. Đường tiệm cận ngang: 1. Định nghĩa Cho hàm số y = f(x) xác định trên một khoảng vô hạn. Đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thoả mãn: , Chú ý: Nếu thì ta viết chung 20' Hoạt động 2: Tìm hiểu cách tìm tiệm cận ngang của đồ thị hàm số · Cho HS nhận xét cách tìm TCN . H1. Tìm tiệm cận ngang ? H2. Tìm tiệm cận ngang ? · Các nhóm thảo luận và trình bày. Đ1. a) TCN: y = 2 b) TCN: y = 0 c) TCN: y = 1 d) TCN: y = 0 Đ2. a) TCN: y = 0 b) TCN: y = c) TCN: y = 1 d) TCN: y = 1 2. Cách tìm tiệm cận ngang Nếu tính được hoặc thì đường thẳng y = y0 là TCN của đồ thị hàm số y = f(x). VD1: Tìm tiệm cận ngang cuẩ đồ thị hàm số: a) b) c) d) VD2: Tìm tiệm cận ngang cuẩ đồ thị hàm số: a) b) c) d) 3' Hoạt động 3: Củng cố Nhấn mạnh: – Cách tìm tiệm cận ngang của đồ thị hàm số. 4. BÀI TẬP VỀ NHÀ: Bài 1, 2 SGK. Đọc tiếp bài "Đường tiệm cận". IV. RÚT KINH NGHIỆM, BỔ SUNG: ----------------------------——«––---------------------------- Tiết dạy: 11 Bài 4: ĐƯỜNG TIỆM CẬN (tt) I. MỤC TIÊU: Kiến thức: Biết khái niệm đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. Kĩ năng: Tìm được đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. Củng cố cách tìm giới hạn, giới hạn một bên của hàm số. Thái độ: Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn

File đính kèm:

  • docGiao an Giai Tich 12(theo cknkt)_HKI.doc