Về kiến thức: Học sinh nắm vững :
- Sơ đồ khảo sát hàm số chung
- Sơ đồ khảo sát hàm số bậc ba
Về kỹ năng: Học sinh
- Nắm được các dạng của đồ thị hàm số bậc ba.
- Tâm đối xứng của đồ thị hàm số bậc ba
- Thực hiện thành thạo các bước khảo sát hàm số bậc ba
4 trang |
Chia sẻ: manphan | Lượt xem: 1222 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Giải tích - Tiết 11: Sơ đồ khảo sát hàm số - Khảo sát hàm số bậc ba, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
TIẾT 11 SƠ ĐỒ KHẢO SÁT HÀM SỐ - KHẢO SÁT HÀM SỐ BẬC BA
I/ Mục tiêu:
Về kiến thức: Học sinh nắm vững :
- Sơ đồ khảo sát hàm số chung
- Sơ đồ khảo sát hàm số bậc ba
Về kỹ năng: Học sinh
- Nắm được các dạng của đồ thị hàm số bậc ba.
- Tâm đối xứng của đồ thị hàm số bậc ba
- Thực hiện thành thạo các bước khảo sát hàm số bậc ba.
- Vẽ đồ thị hàm số bậc ba đúng : chính xác và đẹp.
Về tư duy và thái độ : Học sinh thông qua hàm số bậc ba để rèn luyện:
- Thái độ nghiêm túc, cẩn thận
- Tính logic , chính xác
- Tích cực khám phá và lĩnh hội tri thức mới
II/ Chuẩn bị của giáo viên và học sinh:
- Giáo viên : Giáo án- Phiếu học tập- Bảng phụ.
- Học sinh : Chuẩn bị đọc bài trước ở nhà. Xem lại cách vẽ đồ thị hàm số bậc nhất và hàm số bậc hai.
III/ Phương pháp: Thuyết trình- Gợi mở- Thảo luận nhóm
IV/ Tiến trình bài học:
1/ Ổn định tổ chức: ( 1 phút )
2/ Kiểm tra bài cũ : ( 10 phút )
Câu hỏi : Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc hai:
y= x2 - 4x + 3
3/ Bài mới:
T/g
Hoạt đông của GV
Hoạt động của HS
Ghi bảng
15’
HĐ1: Ứng dụng đồ thị để khảo sát sự biến thiên và vẽ đồ thị hàm số:y= x2 - 4x +3
CH1 : TX Đ của hàm số
CH2: Xét tính đơn điệu và cực trị của hàm số
CH3: Tìm các giới hạn
(x2 - 4x + 3 )
( x2 - 4x + 3 )
CH4: Tìm các điểm đặc biệt của đồ thị hàm số
CH5: Vẽ đồ thị
TX Đ: D=R
y’= 2x - 4
y’= 0 => 2x - 4 = 0
ó x = 2 => y = -1
= -¥
= +¥
x
-¥ 2 +¥
y’
- 0 +
y
+¥ +¥
-1
Nhận xét :
hsố giảm trong ( -¥ ; 2 )
hs tăng trong ( 2 ; +¥ )
hs đạt CT tại điểm ( 2 ; -1 )
Cho x = 0 => y = 3
Cho y = 0 óx = 1 hoặc x= 3
Các điểm đặc biệt
( 2;-1) ; (0;3) (1;0) ; (3;0)
5’
HĐ2: Nêu sơ đồ khảo sát hàm số
I/ Sơ đồ khảo sát hàm số ( sgk)
15’
HĐ3: Khảo sát sự biến thiên và vẽ đồ thị hàm số y= x3 + 3x2 -4
CH1: TX Đ
CH2: Xét chiều biến thiên gồm những bước nào?
CH3: Tìm các giới hạn
CH4: lập BBT
CH5: Nhận xét các khoảng tăng giảm và tìm các điểm cực trị
CH6: Tìm các giao điểm của đồ thị với Ox và Oy
CH7: Vẽ đồ thị hàm số
CH8: Tìm y’’
Giải pt y’’= 0
TX Đ : D=R
y’ = 3x2 + 6x
y’ = 0 ó3x2 + 6x = 0
ó x = 0 => y = -4
x = -2 => y = 0
( x3 + 3x2 - 4) = - ¥
(y= x3 + 3x2 - 4) = +¥
BBT
x
-¥ -2 0 +¥
y’
+ 0 - 0 +
y
+¥
-¥ -4
Hs tăng trong (-¥ ;-2 ) và ( 0;+¥)
Hs giảm trong ( -2; 0 )
Hs đạt CĐ tại x = -2 ; yCĐ=0
Hs đ ạt CT tại x = 0; yCT= -4
Cho x = 0 => y = -4
Cho y = 0 =>
y’’ = 6x +6
y‘’ = 0 => 6x + 6= 0
ó x = -1 => y = -2
II/ Khảo sát hàm số bậc ba
y = ax3 + bx2 +cx +d ( a 0)
Nd ghi bảng là phần hs đã trình bày
Lưu ý: đồ thị y= x3 + 3x2 - 4 có tâm đối xứng là điểm I ( -1;-2)
hoành độ của điểm I là nghiệm của pt: y’’ = 0
10’
20’
10’
HĐ4: Gọi 1 học sinh lên bảng khảo sát sự biến thiên và vẽ đồ thị của hàm số
y = - x3 + 3x2 - 4x +2
HĐ5: GV phát phiếu học tập .
Phiếu học tập 1:
KSVĐT hàm số
y= - x3 + 3x2 – 4
Phiếu học tập 2:
KSVĐT hàm số
y= x3 /3 - x2 + x + 1
HĐ6: Hình thành bảng dạng đồ thị hsố bậc ba:
y=ax3+bx2+cx+d (a≠0)
Gv đưa ra bảng phụ đã vẽ sẵn các dạng của đồ thị hàm bậc 3
TXĐ: D=R
y’= -3x2 +6x - 4
y’ < 0,
;
BBT
x
-¥ +¥
y’
-
y
+¥
-¥
Đ Đ B: (1; 0); (0; 2)
HS chia làm 2 nhóm tự trình bày bài giải.
Hai nhóm cử 2 đại diện lên bảng trình bày bài giải.
Hs nhìn vào các đồ thị ở bảng phụ để đưa ra các nhận xét.
Phần ghi bảng là bài giải của hs sau khi giáo viên kiểm tra chỉnh sửa.
Vẽ bảng tổng kết các dạng của đồ thị hàm số bậc 3
4. Củng cố: Gv nhắc lại các bước KS VĐT hàm số và dạng đồ thị hàm số bậc 3.
5. Dặn dò: Hướng dẫn hs về nhà làm bài tập 1 trang 43.(5’)
File đính kèm:
- khao sat hamosos bac ba.doc