Giáo án lớp 12 môn Hình học - Bài 2: Phương trình mặt phẳng

 1. Kiến thức: Học sinh nắm vững

- Khái niệm vectơ pháp tuyến (VTPT) của mặt phẳng (mp).

- Phương trình tổng quát (PTTQ) của mp, điều kiện để hai mp song song, vuông góc, khoảng cách từ một điểm đến một mp.

 2. Kỹ năng:

 - Biết tìm toạ độ của VTPT của mp, và viết thành thạo PTTQ của mp.

 - Biết chứng minh hai mp song song, hai mp vuông góc, và tính chính xác khoảng cách từ một điểm đến một mp.

 

doc3 trang | Chia sẻ: manphan | Lượt xem: 1204 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Bài 2: Phương trình mặt phẳng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI 2: PHƯƠNG TRÌNH MẶT PHẲNG Tiết 30, 31, 32, 33 I . Mục tiêu: 1. Kiến thức: Học sinh nắm vững - Khái niệm vectơ pháp tuyến (VTPT) của mặt phẳng (mp). - Phương trình tổng quát (PTTQ) của mp, điều kiện để hai mp song song, vuông góc, khoảng cách từ một điểm đến một mp. 2. Kỹ năng: - Biết tìm toạ độ của VTPT của mp, và viết thành thạo PTTQ của mp. - Biết chứng minh hai mp song song, hai mp vuông góc, và tính chính xác khoảng cách từ một điểm đến một mp. 3. Tư duy và thái độ: Biết tự hệ thống các kiến thức cần nhớ, cẩn thận chính xác trong tính toán, vẽ hình, tư duy các vấn đề toán học logic trực quan độc lập, sáng tạo trong quá trình tiếp cận và tích lũy kinh nghiệm trong giải toán, biết quy lạ về quen. II. Chuẩn bị của giáo viên và học sinh: 1. Giáo viên: Bảng phụ, thước kẻ, phấn màu, phiếu học tập, hệ thống ví dụ, 2. Học sinh: Xem lại các kiến thức về vectơ trong phẳng, và xem trước bài học theo sự hướng dẫn của giáo viên. III. Tiến trình bài dạy: 1. Kiểm tra bài cũ: 5 phút ?1: Công thức tích vô hướng của hai . Hai vectơ vuông góc khi nào ? ?2: Cho ; và hai không cùng phương có giá song song hoặc nằm trong mp (a). Tính Áp dụng: Cho và . Tính và rút ra nhận xét. 2. Bài mới: Trong không gian ta đã biết một số cách xác định mặt phẳng chẳng han như xác định mp bằng ba điểm không thẳng hàng, bằng hai đường thẳng cắt nhau, Bây giờ ta sẽ xác định mp bằng pp tọa độ. Hoạt động 1: Vectơ pháp tuyến của mặt phẳng. 3 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Nêu khái niệm VTPT của đường thẳng. Dùng hình ảnh trực quan: bút và sách, bảng phụ giới thiệu vectơ là VTPT của mp (a). ?2: Định nghĩa vectơ pháp tuyến của mp. ?3: Vectơ có phải là VTPT của mp không. Vì sao ? Phát biểu định nghĩa VTPT của đường thẳng. , giá vuông góc với mp. Là VTPT vì và cùng phương vuông góc mp với vectơ . Hoạt động 2: Bài toán xác định VTPT của mặt phẳng. 10 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Tính và kết luận về giá của vectơ với giá của hai vectơ . ?2: So sánh vectơ và vectơ ?3: Kết luận mối quan hệ giữa và mp (a). Vì sao ? Giới thiệu khái niệm “ Tích có hướng ” ?4: Công thức tính tích có hướng của hai vectơ . Thực hiện hoạt động 1 ?5: Từ ba điểm A, B, C. Tìm tọa độ hai vectơ không cùng phương nằm trong mặt phẳng (ABC). ?6: Xác định tọa độ VTPT của mp (ABC). Trao đổi thảo luận nhóm Theo kết quả phần trả bài cũ ta có: Do đó: Suy ra vectơ có giá vuông góc với giá Vì không cùng phương nên Vậy: vectơ là VTPT của mp (a). Vì giá vuông góc với hai đt cắt nhau của mp (a) Kí hiệu: hoặc Công thức: Hay Thảo luận giải quyết vấn đề Ta có: không cùng phương Vậy: VTPT Hoạt động 3: Tiếp cận PTTQ của mặt phẳng. 12 phút Hoạt động của giáo viên Hoạt động của học sinh Bài toán 1: Định hướng chứng minh, vẽ hình ?1: Nhận xét mối quan hệ giữa và. ?2: Tính tọa độ vectơ . ?3: Tính tích vô hướng của và. Bài toán 2: Dạng PTTQ của mặt phẳng. ?4: Có tồn tại hay không điểm nghiệm đúng pt . Gọi (a) là mp đi qua M0 và nhận làm VTPT ?5: Khi ta có điều gì. ?6: Xác định D từ giả thiết . ?7: Kết luận vấn đề. Vẽ hình minh họa Ta có: giá () suy ra Mà Khi đó: Suy ra: (đpcm) Tiếp nhận kiến thức Tồn tại điểm thỏa pt Ví dụ: Nếu ta chọn . Ta có: Ax+ By +Cz – (Ax0+By0+ Cz0) = 0 Mà D = - (Ax0+By0+ Cz0). Vậy: (đpcm) Hoạt động 4: PTTQ của mặt phẳng và vận dụng. 10 phút Hoạt động của giáo viên Hoạt động của học sinh ?1: Từ 2 bài toán trên định nghĩa PTTQ của mp. ?2: Xác định một VTPT của mp có pttq là . ?3: Pt mp đi qua và nhận làm VTPT có dạng. ?4: Tìm một VTPT của mp ?5: Xác định thêm một số VTPT của mp. Hướng dẫn thực hiện hoạt động 3 ?6: Từ 3 điểm M, N, P. Tìm tọa độ hai vectơ không cùng phương nằm trong mp (MNP). ?7: Xác định tọa độ VTPT của mp (ABC). ?8: Viết PTTQ của mp (MNP). ?9: Kết luận. PTTQ có dạng: VTPT Phương trình là: Có một VTPT là Các VTPT của mp là: Trao đổi thảo luận nhóm Ta có: không cùng phương Khi đó: VTPT Pttq có dạng: Hay: -1(x - 1) + 4(y - 1) - 5(z - 1) = 0 Vậy: (MNP) : x - 4y + 5z - 2 = 0 3. Củng cố và dặn dò: 5 phút ?1: Công thức tích có hướng của hai vectơ . ?2: Phương pháp tìm VTPT của mặt phẳng. ?3: PTTQ của mặt phẳng và ptmp khi biết mp đi qua một điểm và có VTPT. Làm các bài tập 1a, b SGK trang 80. Xem tiếp phần còn lại của bài “ Phương trình mặt phẳng ” trả lời các câu hỏi sau. ?1: Dạng của pt mp trong một số trường hợp đặc biệt. ?2: Điều kiện để hai mp song song hay vuông góc. ?3: Công thức tính khoảng cách từ điểm đến mp.

File đính kèm:

  • docBai 2 Phuong Trinh Mat Phang.doc