Giáo án lớp 12 môn Hình học - Tiết :2: Bài tập khái niệm khối đa diện

. Mục tiêu:

 1. Về kiến thức:

 - Củng cố khái niệm về: hình đa diện, khối đa diện và hai đa diện bằng nhau.

 2. Về kỹ năng:

 - Biết cách nhận dạng một hình là hình đa diện, một hình không phải là hình đa diện.

 - Vận dụng các phép dời hình trong không gian để phân chia, chứng minh hai hình đa diện bằng nhau.

 - Biết cách phân chia các khối đa diện đơn giản.

 

doc23 trang | Chia sẻ: manphan | Lượt xem: 999 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án lớp 12 môn Hình học - Tiết :2: Bài tập khái niệm khối đa diện, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 23/8/2010 Tiết :2 BÀI TẬP KHÁI NIỆM KHỐI ĐA DIỆN I. Mục tiêu: 1. Về kiến thức: - Củng cố khái niệm về: hình đa diện, khối đa diện và hai đa diện bằng nhau. 2. Về kỹ năng: - Biết cách nhận dạng một hình là hình đa diện, một hình không phải là hình đa diện. - Vận dụng các phép dời hình trong không gian để phân chia, chứng minh hai hình đa diện bằng nhau. - Biết cách phân chia các khối đa diện đơn giản. 3. Về tư duy, thái độ: - Rèn luyện cho học sinh kỹ năng phân tích, tổng hợp để giải một bài toán. - Học sinh học tập tích cực. II. Chuẩn bị của giáo viên và học sinh: - GV: Giáo án, bảng phụ. - HS: Học bài cũ và xem trước các bài tập trang 12 SGK. III. Phương pháp: - Gợi mở, vấn đáp, thảo luận nhóm. IV. Tiến trình dạy học: 1. Ổn định lớp: Sĩ số: Vắng: . 2. Kiểm tra bài cũ: (7 phút) (d) (c) (b) (a) * Câu hỏi 1: (GV treo bảng phụ_Chứa hình a, b, c). Trong các hình sau, hình nào là hình đa diện, hình nào không phải là hình đa diện? - Hãy giải thích vì sao hình (b) không phải là hình đa diện? * Câu hỏi 2: (GV treo bảng phụ_Chứa hình d). Cho hình lập phương như hình vẽ. Hãy chia hình lập phương trên thành hai hình lăng trụ bằng nhau? - HS nhận xét. - GV nhận xét và cho điểm. 3. Bài mới: Hoạt động 1: Giải BT 4 trang 12 SGK: “Chia khối lập phương thành 6 khối tứ diện bằng nhau”. Hoạt động của GV Hoạt động của HS Ghi bảng - GV treo bảng phụ có chứa hình lập phương ở câu hỏi KTBC. - Gợi mở cho HS: + Ta chỉ cần chia hình lập phương thành 6 hình tứ diện bằng nhau. + Theo câu hỏi 2 KTBC, các em đã chia hình lập phương thành hai hình lăng trụ bằng nhau. + CH: Để chia được 6 hình tứ diện bằng nhau ta cần chia như thế nào? - Gọi HS trả lời cách chia. - Gọi HS nhận xét. - Nhận xét, chỉnh sửa. - Theo dõi. - Phát hiện ra chỉ cần chia mỗi hình lăng trụ thành ba hình tứ diện bằng nhau. - Suy nghĩ để tìm cách chia hình lăng trụ ABD.A’B’D’ thành 3 tứ diện bằng nhau. - Nhận xét trả lời của bạn. Bài 4/12 SGK: - Ta chia lăng trụ ABD.A’B’D’ thành 3 tứ diện BA’B’D’, AA’BD’ và ADBD’. Phép đối xứng qua (A’BD’) biến tứ diện BA’B’D’ thành tứ diện AA’BD’ và phép đối xứng qua (ABD’) biến tứ diện AA’BD’ thành tứ diện ADBD’ nên ba tứ diện trên bằng nhau. - Làm tương tự đối với lăng trụ BCD.B’C’D’ ta chia được hình lập phương thành 6 tứ diện bằng nhau. Hoạt động 2: Giải BT 3 trang 12 SGK: “Chia khối lập phương thành 5 khối tứ diện”. Hoạt động của GV Hoạt động của HS Ghi bảng - Treo bảng phụ có chứa hình lập phương ở câu hỏi 2 KTBC. - Yêu cầu HS thảo luận nhóm để tìm kết quả. - Gọi đại diện nhóm trình bày. - Gọi đại diện nhóm nhận xét. - Nhận xét, chỉnh sửa và cho điểm. - Thảo luận theo nhóm. - Đại diện nhóm trình bày. - Đại diện nhóm trả lời. Bài 3/12 SGK: - Ta chia lăng trụ thành 5 tứ diện AA’BD, B’A’BC’, CBC’D, D’C’DA’ và DA’BC’. Hoạt động 3: Giải BT 1 trang 12 SGK: “Cm rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó là một số chẵn. Cho ví dụ”. Hoạt động của GV Hoạt động của HS Ghi bảng - Hướng dẫn HS giải: + Giả sử đa diện có m mặt. Ta c/m m là số chẵn. + CH: Có nhận xét gì về số cạnh của đa diện này? + Nhận xét và chỉnh sửa. - CH: Cho ví dụ? - Theo dõi. - Suy nghĩ và trả lời. - Suy nghĩ và trả lời. Bài 1/12 SGK: Giả sử đa diện (H) có m mặt. Do: Mỗi mặt có 3 cạnh nên có 3m cạnh. Mỗi cạnh của (H) là cạnh chung của hai mặt nên số cạnh của (H) bằng c =. Do c nguyên dương nên m phải là số chẵn (đpcm). VD: Hình tứ diện có 4 mặt. 4. Củng cố: (GV treo bảng phụ BT 3/12 SGK) - CH 1: Hình sau có phải là hình đa diện hay không? - CH 2: Hãy chứng minh hai tứ diện AA’BD và CC’BD bằng nhau? 5. Dặn dò: - Giải các BT còn lại. - Đọc trước bài: “Khối đa diện lồi và khối đa diện đều”. Ngày soạn: 38/8/2010 Tiết: 3 KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU Mục tiêu: +Về kiến thức: Làm cho học sinh nắm được đn khối đa diện lồi,khối đa diện đều +Về kỉ năng: Nhận biết các loại khối đa diện + Về tư duy thái độ: Tư duy trực quan thông qua các vật thể có dạng các khối đa diện,thái độ học tập nghiêm túc. Chuẩn bị của giáo viên và học sinh: +GV: Giáo án ,hình vẽ các khối đa diện trên giấy rôki. +HS: Kiến thức về khối đa diện Phương pháp: Trực quan, gợi mở,vấn đáp. Tiến trình bài học: 1.Ổn định tổ chức 2.Kiểm tra bài cũ: +Nêu đn khối đa diện +Cho học sinh xem 5 hình vẽ gồm 4 hình là khối đa diện(2 lồi và 2 không lồi), 1 hình không là khối đa diện.Với câu hỏi: Các hình nào là khối đa diện?Vì sao không là khối đa diện? Khối đa diện không lồi 3.Bài mới Nội dung ghi bảng Hoạt động của GV Hoạt động HS I.ĐN khối đa diện lồi:(SGK) II.Đn khối đa diện đều: (SGK) +Từ các hình vẽ của KTBC Gv cho học sinh phân biệt sự khác nhau giữa 4 khối đa diện nói trên từ đó nãy sinh đn(Gv vẽ minh hoạ các đoạn thẳng trên các hình và cho hs nhận xét) - Tæ chøc cho häc sinh ®äc, nghiªn cøu phÇn kh¸i niÖm vÒ khèi ®a diÖn låi. +Thế nào là khối đa diện không lồi? +Cho học sinh xem một số hình ảnh về khối đa diện đều. - Tæ chøc häc sinh ®äc, nghiªn cøu ®Þnh nghÜa vÒ khèi ®a diÖn ®Òu. - Cho häc sinh quan s¸t m« h×nh c¸c khèi tø diÖn ®Òu, khèi lËp ph­¬ng. HD học sinh nhËn xÐt vÒ mÆt, ®Ønh cña c¸c khèi ®ã. - Giíi thiÖu ®Þnh lÝ: Cã 5 lo¹i khèi ®a diÖn ®Òu. +HD hs cũng cố định lý bằng cách gắn loại khối đa diện đều cho các hình trong hình 1.20 +Cũng cố kiến thức bằng cách hướng dẫn học sinh ví dụ sau: “Chứng minh rằng trung điểm các cạnh của một tứ diện đều cạnh a là các đỉnh của một bát diện đều.” HD cho học sinh bằng hình vẽ trên rô ki. + Cho học sinh hình dung được khối bát diện. +HD cho học sinh cm tam giác IEF là tam giác đều cạnh a. Hỏi: +Các mặt của tứ diện đều có tính chất gì? +Đoạn thẳng EF có tính chất gì trong tam giác ABC. Tương tự cho các tam giác còn lại. Xem hình vẽ , nhận xét, phát biểu đn +HS phát biểu ý kiến về khối đa diện không lồi. Xem hình vẽ 1.19 sgk + Quan s¸t m« h×nh tø diÖn ®Òu vµ khèi lËp ph­¬ng vµ ®­a ra ®­îc nhËn xÐt vÒ mÆt, ®Ønh cña c¸c khèi ®ã. + Ph¸t biÓu ®Þnh nghÜa vÒ khèi ®a diÖn ®Òu. + §Õm ®­îc sè ®Ønh vµ sè c¹nh cña c¸c khèi ®a diÖn ®Òu: Tø diÖn ®Òu, lôc diÖn ®Òu, b¸t diÖn ®Òu, khèi 12 mÆt ®Òu vµ khèi 20 mÆt ®Òu.(theo h1.20) +Hình dung được hình vẽ và trả lời các câu hỏi để chứng minh được tam giác IEF là tam giác đều. Cũng cố và dặn dò: +Phát biểu đn khối đa diện lồi, khối đa diện đều. +Làm các bài tập trong SGK. +Đọc trước bài khái niệm về thể tích của khối đa diện. Ngày soạn:6/9/2010 Tiết : 4 BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN I)Mục tiêu : 1- Về kiến thức : * Biết cách tính thể tích của một số khối đa diện : Khối chóp, khối lăng trụ * Biết cách tính tỉ số thể tích của hai khối đa diện 2- Về kỹ năng: * Sử dụng thành thạo công thức tính thể tích và kỹ năng tính toán * Phân chia khối đa diện 3- Về tư duy và thái độ * Rèn luyện trí tưởng tượng hình học không gian . Tư duy lôgic * Rèn luyện tính tích cực của học sinh II) Chuẩn bị của giáo viên và học sinh 1-Giáo viên : Bảng phụ , thước kẻ , phấn trắng , phấn màu 2-Học sinh : Thước kẻ , giấy III) Phương pháp : Gợi mở và vấn đáp IV) Tiến trình bài học Ổn định tổ chức : Điểm danh Kiểm tra bài cũ : Nêu công thức tính thể tích của khối chóp và khối lăng trụ , khối hộp chữ nhật , khối lập phương Bài mới Hoạt động 1 : Bài tập 1 /25(sgk) Tính thể tích khối tứ diện đều cạnh a Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H1: Nêu công thức tính thể tích của khối tứ diện ? H2: Xác định chân đường cao của tứ diện ? * Chỉnh sửa và hoàn thiện lời giải * Trả lời các câu hỏi của giáo viên nêu * Học sinh lên bảng giải A B D H C Hạ đường cao AH VABCD = SBCD.AH Vì ABCD là tứ diện đều nên H là tâm của tam giác BCD H là trọng tâm Do đó BH = AH2 = a2 – BH2 = a2 VABCD = a3. Hoạt động2: Bài tập 3/25(sgk) Cho hình hộp ABCD.A’B’C’D’ . Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Đặt V1 =VACB’D’ V= thể tích của khối hộp H1: Dựa vào hình vẽ các em cho biết khối hộp đã được chia thành bao nhiêu khối tứ diện , hãy kể tên các khối tứ diện đó ? H2: Có thể tính tỉ số ? H3: Có thể tính V theo V1 được không ? H4: Có nhận xét gì về thể tích của các khối tứ diện D’ADC , B’ABC, AA’B’D’,CB’C’D’ *Trả lời câu hỏi của GV * Suy luận V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 * Suy luận VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’ = V * Dẫn đến : V = 3V1 D C A B C’ D’ A’ Gọi V1 = VACB’D’ B’ V là thể tích hình hộp S là diện tích ABCD h là chiều cao V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 Mà VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’= n ên : V ậy : Hoạt động 3: Bài tập 5/26(sgk) Cho tam giác ABC vuông cân ở A AB = a . Trên đường thẳng qua C và vuông góc với (ABC) lấy diểm D sao cho CD = a . Mặt phẳng qua C vuông góc với BD cắt BD tại F và cắt AD tại E . Tính thể tích khối tứ diện CDEF Hoạt động của gv Hoạt động của hs Ghi bảng H1: Xác định mp qua C vuông góc với BD H2: CM : H3: Tính VDCEF bằng cách nào? * Dựa vào kết quả bài tập 5 hoặc tính trực tiếp H4: Dựa vào bài 5 lập tỉ số nào? H5: dựa vào yếu tố nào để tính được các tỉ số H5: Tính thể tích của khối tứ diện DCBA * GV sửa và hoàn chỉnh lời giải * Hướng dẫn học sinh tính VCDEF trực tiếp ( không sử dụng BT 5) * Trả lời câu hỏi GV * xác định mp cần dựng là (CEF) * vận dụng kết quả bài tập 5 * Tính tỉ số : * học sinh trả lời các câu hỏi và lên bảng tính các tỉ số * học sinh tính VDCBA D F E B C A Dựng (1) dựng ta có : (2) Từ (1) và (2) * vuông cân tại C có E là trung điểm của AD (3) * * vuông tại C có (4) Từ (3) và (4) * * Hoạt đông4: Bài tập 6/26(sgk) Cho hai đường thẳng chéo nhau d và d’ đoạn thẳng AB có độ dài a trượt trên d . đoạn thẳng CD có độ dài b trượt trên d’ . Chứng minh rằng khối tứ diện ABCD có thể tích không đổi Hoạt động của gv Hoạt động của hs Ghi bảng * Gợi ý: Tạo sự liên quan của giả thiết bằng cách dựng hình bình hành BDCE trong mp (BCD) H1: Có nhận xét gì về VABCD và VABED? H2: Xác định góc giữa hai đường d và d’ * Chú ý GV giải thích sin H3: Xác định chiều cao của khối tứ diện CABE * Chỉnh sửa và hoàn thiện bài giải của HS * Trả lời các câu hỏi của GV đặt ra: + Suy diễn để dẫn đến VABCD = VABEC + Gọi HS lên bảng và giải A d B D E C d’ * Gọi h là khoảng cách của hai đường thẳng chéo nhau d và d’ * là góc giữa d và d’ không đổi * Trong (BCD) dựng hình bình hành BDCE * VABCD=VABEC * Vì d’//BE Và h là khoảng cách từ d’đến mp(ABE) h không đổi * = * VABCD Hoạt động 5: giải bài toán 6 bằng cách khác ( GV gợi ý ) V) Củng cố toàn bài + Nắm vững các công thức thể tích + Khi tính thể tích của khối chóp tam giác ta cần xác định mặt đáy và chiều cao để bài toán đơn giản hơn + Khi tính tỉ số thể tích giữa hai khối ta có thể tính trực tiếp hoặc tính gián tiếp VI) Bài tập về nhà : Bài1: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A , AC = b , góc ACB = 60o . Đường thẳng BC’ tạo với mp (AA’C’C) một góc 30o Tính độ dài đoạn thẳng AC’ Tính thể tích của khối lăng trụ Bài2: Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số k > 0 cho trước Ngày soạn: 13/9/2010 Tiết: 5 §3: Khái niệm về thể tích của khối đa diện I. Mục tiêu 1. Về kiến thức: - Nắm được khái niệm về thể tích khối đa diện - Nắm được các công thức tính thể tích của khối hộp chữ nhật, khối lăng trụ. 2. Về kỹ năng: - Rèn luyện kỹ năng vận dụng các công thức tính thể tích để tính được thể tích khối hộp chữ nhật, khối chóp. 3. Về tư duy, thái độ: - Vận dụng linh hoạt các công thức vào các bài toán liên quan đến thể tích. - Phát triển tư duy trừu tượng. - Kỹ năng vẽ hình. II. Chuẩn bị của giáo viên và học sinh: Giáo viên: Chuẩn bị vẽ các hình 1.25; 1.26 trên bảng phụ Chuẩn bị 2 phiếu học tập Học sinh: Ôn lại kiến thức hình chóp, lăng trụ... đã học ở lớp 11. Đọc trước bài mới ở nhà. III. Phương pháp: Nêu vấn đề, dẫn dắt đến công thức, phát vấn gợi mở, xây dựng công thức Phát huy tính tích cực tự giác của học sinh IV. Tiến trình bài học. Ổn định tổ chức. Kiểm tra bài cũ H1: Phát biểu định nghĩa khối đa diện, khối đa diện đều và các tính chất của chúng. H2: Xét xem hình bên có phải là hình đa diện không? Vì sao? Bài mới. HĐ1: Khái niệm về thể tích khối đa diện Hoạt động giáo viên Hoạt động hs Ghi bảng - Đặt vấn đề: dẫn dắt đến khái niệm thể tích của khối đa diện - Giới thiệu về thể tích khối đa diện: Mỗi khối đa diện được đặt tương ứng với một số dương duy nhất V (H) thoả mãn 3 tính chất (SGK). - Giáo viên dùng bảng phụ vẽ các khối (hình 1.25) - Cho học sinh nhận xét mối liên quan giữa các hình (H0), (H1), (H2), (H3) H1: Tính thể tích các khối trên? - Tổng quát hoá để đưa ra công thức tính thể tích khối hộp chữ nhật. + Học sinh suy luận trả lời. + Học sinh ghi nhớ các tính chất. + Học sinh nhận xét, trả lời. + Gọi 1 học sinh giải thích V= abc. I.Khái niệm về thể tích khối đa diện. 1.Kháiniệm(SGK) +Hình vẽ(Bảng phụ) 2. Định lí(SGK) HĐ2: Thể tích khối lăng trụ Hoạt động giáo viên Hoạt động hs Ghi bảng H2: Nêu mối liên hệ giữa khối hộp chữ nhật và khối lăng trụ có đáy là hình chữ nhật. H3: Từ đó suy ra thể tích khối lăng trụ * Phát phiếu học tập số 1 + HS trả lời: Khối hộp chữ nhật là khối lăng trụ có đáy là hình chữ nhật. + HS suy luận và đưa ra công thức. + HS thảo luận nhóm, chọn một HS trình bày. Phương án đúng là phương án C. II.Thể tích khối lăng trụ Định lí: Thể tích khối lăng trụ có diện tích đáy là B,chiều cao h là: V=B.h 4> Cñng cè vµ h­íng dÉn häc ë nhµ: -Kh¸i niÖm khèi ®a diÖn, c«ng thøc tÝnh thÓ tÝch khèi hép ch÷ nhËt, khèi l¨ng trô - §äc tr­íc lý thuyÕt phÇn thÓ tÝch khèi chãp. Ngày soạn: 13/9/2010 Tiết: 6 §3: Khái niệm về thể tích của khối đa diện I. Mục tiêu 1. Về kiến thức: - Nắm được các công thức tính thể tích của khối chóp. - Biết chia khối chóp và khối lăng trụ thành các khối tứ diện (bằng nhiều cách khác nhau). 2. Về kỹ năng: - Rèn luyện kỹ năng vận dụng các công thức tính thể tích để tính được thể tích khối lăng trụ. - Kỹ năng vẽ hình, chia khối chóp thành các khối đa diện. 3. Về tư duy, thái độ: - Vận dụng linh hoạt các công thức vào các bài toán liên quan đến thể tích. - Phát triển tư duy trừu tượng. - Kỹ năng vẽ hình. II. Chuẩn bị của giáo viên và học sinh: Giáo viên: Chuẩn bị vẽ hình 1.28 trên bảng phụ Chuẩn bị 2 phiếu học tập Học sinh: Ôn lại kiến thức thÓ tÝch khèi l¨ng trô. Đọc trước bài mới ở nhà. III. Phương pháp: Nêu vấn đề, dẫn dắt đến công thức, phát vấn gợi mở, xây dựng công thức Phát huy tính tích cực tự giác của học sinh IV. Tiến trình bài học. Ổn định tổ chức. Kiểm tra bài cũ (5 phút) H1: Nªu c«ng thøc tÝnh thÓ tÝch khèi l¨ng trô H1: Nªu c«ng thøc tÝnh diÖn tÝch tam gi¸c. ( Gäi hs lªn b¶ng tr¶ lêi) Bài mới. HĐ3: Thể tích khối chóp Hoạt động giáo viên Hoạt động hs Ghi bảng + Giới thiệu định lý về thể tích khối chóp + Thể tích của khối chóp có thể bằng tổng thể tích của các khối chóp, khối đa diện. + Yêu cầu học sinh nghiên cứu Ví dụ1 (SGK trang 24) H4: So sánh thể tích khối chóp C. A’B’C’ và thể tích khối lăng trụ ABC. A’B’C’? H5: Suy ra thể tích khối chóp C. ABB’A’? Nhận xét về diện tích của hình bình hành ABFE và ABB’A’? H6: Từ đó suy ra thể tích khối chóp C. ABEF theo V. H7: Xác định khối (H) và suy ra V (H) H8: Tính tỉ số =? * Phát phiếu học tập số 2: Ví dụ 2: bài tập 4 trang 25 SGK. * Hướng dẫn học sinh giải và nhấn mạnh công thức để học sinh áp dụng vào giải các bài tập liên quan + Một hs nhắc lại chiều cao của hình chóp. Suy ra chiều cao của khối chóp. + Hs ghi nhớ công thức. + Hs suy nghĩ trả lời: E’ VC.A’B’C’= 1/3 V VC. ABB’A’= 2/3V E’ SABFE= ½ SABB’A’ =1/2 Học sinh thảo luận nhóm và nhóm trưởng trình bày. Phương án đúng là phương án B. VA’. SB’C’= 1/3 A’I’.SS.B’C’ VA.SBC= 1/3 AI.SSBC III.T/t khối chóp 1. Định lý: (SGK) 2. Ví dụ A C E B F A’ C’ B’ F’ S I’ C’ A’ B’ I C A B 4.Củng cố : Giáo viên hướng dẫn học sinh nhắc lại a.Công thức tính thể tích khối hộp chữ nhật, khối lăng trụ, khối chóp. Phương pháp tính thể tích khối lăng trụ, khối chóp 5 Bài tập về nhà: Giải các bài tập 1,2,3,5,6 SGK V. Phụ lục: 1. Phiếu học tập : a. Cho (H) là khối lăng trụ đứng tam giác đều có tất cả các cạnh bằng a, thể tích (H) bằng: A. B. C. D. b. Cho tứ diện ABCD, gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối ABCD bằng: A. B. C. D. 2. Bảng phụ: Vẽ các hình 1.25; 1.26 ; 1.28 trên bảng phụ Ngày soạn: 27/9/2010 Tiết :7 BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN I)Mục tiêu : 1- Về kiến thức : * Biết cách tính thể tích của một số khối đa diện : Khối chóp, khối lăng trụ * Biết cách tính tỉ số thể tích của hai khối đa diện 2- Về kỹ năng: * Sử dụng thành thạo công thức tính thể tích và kỹ năng tính toán * Phân chia khối đa diện 3- Về tư duy và thái độ * Rèn luyện trí tưởng tượng hình học không gian . Tư duy lôgic * Rèn luyện tính tích cực của học sinh II) Chuẩn bị của giáo viên và học sinh 1-Giáo viên : Bảng phụ , thước kẻ , phấn trắng , phấn màu 2-Học sinh : Thước kẻ , giấy III) Phương pháp : Gợi mở và vấn đáp IV) Tiến trình bài học Ổn định tổ chức : Điểm danh Kiểm tra bài cũ : Nêu công thức tính thể tích của khối chóp và khối lăng trụ , khối hộp chữ nhật , khối lập phương ? Bài mới Hoạt động 1 : Bài tập 1 /25(sgk) Tính thể tích khối tứ diện đều cạnh a Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H1: Nêu công thức tính thể tích của khối tứ diện ? H2: Xác định chân đường cao của tứ diện ? * Chỉnh sửa và hoàn thiện lời giải * Trả lời các câu hỏi của giáo viên nêu * Học sinh lên bảng giải A B D H C Hạ đường cao AH VABCD = SBCD.AH Vì ABCD là tứ diện đều nên H là tâm của tam giác BCD H là trọng tâm Do đó BH = AH2 = a2 – BH2 = a2 VABCD = a3. Hoạt động2: Bài tập 3/25(sgk) Cho hình hộp ABCD.A’B’C’D’ . Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện Hoạt động của gv Hoạt động của hs Ghi bảng Đặt V1 =VACB’D’ V= thể tích của khối hộp H1: Dựa vào hình vẽ các em cho biết khối hộp đã được chia thành bao nhiêu khối tứ diện , hãy kể tên các khối tứ diện đó ? H2: Có thể tính tỉ số ? H3: Có thể tính V theo V1 được không ? H4: Có nhận xét gì về thể tích của các khối tứ diện D’ADC , B’ABC, AA’B’D’,CB’C’D’ *Trả lời câu hỏi của GV * Suy luận V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 * Suy luận VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’ = V * Dẫn đến : V = 3V1 D C A B C’ D’ A’ Gọi V1 = VACB’D’ B’ V là thể tích hình hộp S là diện tích ABCD h là chiều cao V = VD’ADC + VB’ABC +VAA’B’D’+ VCB’C’D’ + V1 Mà VD’ADC = VB’ABC = VAA’B’D’ = VCB’C’D’= n ên : Vậy : V) Củng cố toàn bài + Nắm vững các công thức thể tích. Khi tính thể tích của khối chóp tam giác ta cần xác định mặt đáy và chiều cao để bài toán đơn giản hơn + Khi tính tỉ số thể tích giữa hai khối ta có thể tính trực tiếp hoặc tính gián tiếp VI) Bài tập về nhà : Bài1: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A , AC = b , góc ACB = 60o . Đường thẳng BC’ tạo với mp (AA’C’C) một góc 30o Tính độ dài đoạn thẳng AC’ Tính thể tích của khối lăng trụ Ngày soạn: 1/10/2010 Tiết :8 BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN I)Mục tiêu : 1- Về kiến thức : * Biết cách tính thể tích của một số khối đa diện : Khối chóp, khối lăng trụ * Biết cách tính tỉ số thể tích của hai khối đa diện 2- Về kỹ năng: * Sử dụng thành thạo công thức tính thể tích và kỹ năng tính toán * Phân chia khối đa diện 3- Về tư duy và thái độ * Rèn luyện trí tưởng tượng hình học không gian . Tư duy lôgic * Rèn luyện tính tích cực của học sinh II) Chuẩn bị của giáo viên và học sinh 1-Giáo viên : Bảng phụ , thước kẻ , phấn trắng , phấn màu 2-Học sinh : Thước kẻ , giấy III) Phương pháp : Gợi mở và vấn đáp IV) Tiến trình bài học Ổn định tổ chức : Điểm danh Kiểm tra bài cũ : Nêu công thức tính thể tích của khối chóp và khối lăng trụ , khối hộp chữ nhật , khối lập phương Bài mới Hoạt động 1 : Bài tập 5/26(sgk) Cho tam giác ABC vuông cân ở A AB = a . Trên đường thẳng qua C và vuông góc với (ABC) lấy diểm D sao cho CD = a . Mặt phẳng qua C vuông góc với BD cắt BD tại F và cắt AD tại E . Tính thể tích khối tứ diện CDEF Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng H1: Xác định mp qua C vuông góc với BD H2: CM : H3: Tính VDCEF bằng cách nào? * Dựa vào kết quả bài tập 5 hoặc tính trực tiếp H4: Dựa vào bài 5 lập tỉ số nào? H5: dựa vào yếu tố nào để tính được các tỉ số H5: Tính thể tích của khối tứ diện DCBA * GV sửa và hoàn chỉnh lời giải * Hướng dẫn học sinh tính VCDEF trực tiếp ( không sử dụng bài tập 5) * Trả lời câu hỏi GV * xác định mp cần dựng là (CEF) * vận dụng kết quả bài tập 5 * Tính tỉ số : * học sinh trả lời các câu hỏi và lên bảng tính các tỉ số * học sinh tính VDCBA D F E B C A Dựng (1) dựng ta có : (2) Từ (1) và (2) * vuông cân tại C có E là trung điểm của AD (3) * * vuông tại C có (4) Từ (3) và (4) * * Hoạt đông4: Bài tập 6/26(sgk) Cho hai đường thẳng chéo nhau d và d’ đoạn thẳng AB có độ dài a trượt trên d . đoạn thẳng CD có độ dài b trượt trên d’ . Chứng minh rằng khối tứ diện ABCD có thể tích không đổi Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng * Gợi ý: Tạo sự liên quan của giả thiết bằng cách dựng hình bình hành BDCE trong mp (BCD) H1: Có nhận xét gì về VABCD và VABED? H2: Xác định góc giữa hai đường d và d’ * Chú ý GV giải thích sin H3: Xác định chiều cao của khối tứ diện CABE * Chỉnh sửa và hoàn thiện bài giải của HS * Trả lời các câu hỏi của GV đặt ra: + Suy diễn để dẫn đến VABCD = VABEC + Gọi HS lên bảng và giải A d B D E C d’ * Gọi h là khoảng cách của hai đường thẳng chéo nhau d và d’ * là góc giữa d và d’ không đổi * Trong (BCD) dựng hình bình hành BDCE * VABCD=VABEC * Vì d’//BE Và h là khoảng cách từ d’đến mp(ABE) h không đổi * = * VABCD Không đổi Hoạt động 5: giải bài toán 6 bằng cách khác ( GV gợi ý dựng hình lăng trụ tam giác ) V) Củng cố toàn bài + Nắm vững các công thức thể tích + Khi tính thể tích của khối chóp tam giác ta cần xác định mặt đáy và chiều cao để bài toán đơn giản hơn + Khi tính tỉ số thể tích giữa hai khối ta có thể tính trực tiếp hoặc tính gián tiếp VI) Bài tập về nhà : Bài1: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A , AC = b , góc ACB = 60o . Đường thẳng BC’ tạo với mp (AA’C’C) một góc 30o Tính độ dài đoạn thẳng AC’ Tính thể tích của khối lăng trụ Bài2: Hãy chia một khối tứ diện thành hai khối tứ diện sao cho tỉ số thể tích của hai khối tứ diện này bằng một số k > 0 cho trước Ngày soạn: 18/10/2010 Tiết :10 ÔN TẬP CHƯƠNG I I. Mục tiêu: Kiến thức : Học sinh phải nắm được: Khái niệm về đa diện và khối đa diện Khái niệm về 2 khối đa diện bằng nhau. Đa diện đều và các loại đa diện. Khái niệm về thể tích khối đa diện. Các công thức tính thể tích khối hộp CN. Khối lăng trụ .Khối chóp. Kỹ năng: Học sinh Nhận biết được các đa diện & khối đa diện. Biết cách phân chia và lắp ghép các khối đa diện để giải các bài toán thể tích. Hiểu và nhớ được các công thức tính thể tích của các khối hộp CN. Khối LTrụ. Khối chóp. Vận dụng được chúng vào việc giải các bài toán về thể tích khối đa diện. Tư duy thái độ: Biết tự hệ thống các kiến thức cần nhớ. Tự tích lũy một số kinh nghiệm giải toán II. Chuẩn bị của Giáo viên & Học sinh: Giáo viên:Giáo án,thước kẻ, phấn màu,... Học sinh: Chuẩn bị trước bài tập ôn chương I III. Phương pháp: Phát vấn , Gợi mở kết hợp hoạt động nhóm. IV. Tiến trình bài học: Ổn định tổ chức lớp: Sĩ số, tác phong. Kiểm tra bài cũ: HS 1: Giải các câu trắc nghiệm 1, 3, 5, 7, 9 ( Có giải thích) HS 2: Giải các câu trắc nghiệm 2, 4, 6, 8, 10 ( Có giải thích ) HS 3: Bài 11: Bài mới: HOẠT ĐỘNG 1: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Bài6 (sgk/26) Hs đọc đề, vẽ hình. sau khi kiểm tra hình vẽ một số hs g/v giới thiệu h/vẽ ở bảng phụ H1: Xác định góc 60o. Xác định vị trí D.Nêu hướng giải bài toán a/.= 60o . .D là chân đ/cao kẻ từ B và C .của tg SAB và SAC .SA = 2AH = .AD = AI = . b/ VSDBC = VSABC = HOẠT ĐỘNG 2: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Bài 10(sgk/27) a/ Nhận xét về tứ diện A’B’BC suy ra hướng giải quyết . Chọn đỉnh, đáy hoặc thông qua V của ltrụ. b/ Nêu cách xác định E, F và hướng giải quyết bài toán a/ Cách 1: VA’B’BC = VA’ABC (cùng Sđ, h) VA’ABC = VCA’B’C’ ( nt ) VA’B’BC = VLT = b/ CI =, IJ= . KJ = SKJC = SKIC = d(C,(A’B’EF) = d(C,KJ) = = SA’B’EF = VC.A’B’EF = *Kiến thức & Kỹ năng xác định và tính kcách từ một điểm dến một mp HOẠT ĐỘNG 3: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Bài

File đính kèm:

  • docGA HHCB12.doc
Giáo án liên quan