Cácbàitoánsau đây khai thácmột vài mởrộngcủa mộtsốbàitoánphẳngsang
bàitoántrong không gian vàsựvậndụng phương phápgiảibàitoánphẳng đểgiải
bàitoánmởrộng đó.
Bài toán 1: Cho ABC vuông tại A, M làmột điểmbấtkìtrên BC. AM tạovới
AB, AC cácgóctheo thứtựlà và . Chứngminh cos
2
+ cos
2
= 1.
Giải:
9 trang |
Chia sẻ: manphan | Lượt xem: 990 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Hình học - Vài liên hệ giữa hình học phẳng và hình học không gian, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
WWW.VNMATH.COM
VÀI LIÊN HỆ GIỮA HÌNH HỌC PHẲNG VÀ HÌNH HỌC KHÔNG GIAN
Trịnh Thị Thanh
Trường THPT chuyên Lê Quý Đôn, TP Đà Nẵng
====================
Các bài toán sau đây khai thác một vài mở rộng của một số bài toán phẳng sang
bài toán trong không gian và sự vận dụng phương pháp giải bài toán phẳng để giải
bài toán mở rộng đó.
Bài toán 1: Cho ABC vuông tại A, M là một điểm bất kì trên BC. AM tạo với
AB, AC các góc theo thứ tự là và . Chứng minh cos2 + cos2 = 1.
Giải:
Qua M dựng đường thẳng vuông góc với AM,
cắt AB, AC lần lượt tại B’ và C’.
Khi đó: cos =
'AB
AM ; cos =
'AC
AM
cos2 + cos2 = )
AC'
1
AB'
1
(AM
22
2
=
AM
1
.AM
2
2
= 1
(Do AB’C’ vuông tại A, AM là đường cao).
Bài toán 1’: Cho hình chóp tam diện vuông SABC đỉnh S, M là điểm thuộc miền
trong ABC. SM hợp với các cạnh SA, SB, SC các góc theo thứ tự , , .
Chứng minh cos2 + cos2 + cos2 = 1.
Giải:
Sử dụng cách giải tương tự cách giải với bài toán
trong mặt phẳng. Dùng mặt phẳng qua M và vuông
góc với SM cắt hình chóp lần lượt tại A’, B’, C’.
Khi đó:
SA'
SM
cos ;
SB'
SM
cos ;
SC'
SM
cos
Nên:
222 coscoscos = )
'
1
'
1
'
1
(SM 222
2
SCSBSA
= 1
C
B
A
A’
M
S
C’
B’
C
B’
M
C’
B
A
WWW.VNMATH.COM
(Theo tính chất của tứ diện vuông)
Vậy cos2 + cos2 + cos2 = 1.
Bài toán 2: Trong tam giác ABC gọi G là giao điểm 3 đường trung tuyến. Chứng
minh 0GCGBGA .
Giải :
Gọi M, N lần lượt là trung điểm của BC và AC.
Ta có:
2
1
AB
MN
GA
GM
GA
2
1
GM .
Lại có: GM2GCGB
GCGB GA = GM2GM2
Hay: 0 GCGBGA .
Bài toán 2’: Cho tứ diện ABCD. Gọi G là giao điểm các đường trọng tuyến của tứ
diện. Chứng minh 0 GDGCGBGA .
Giải:
Gọi E là trung điểm của CD; G1, G2 lần lượt là
trọng tâm của các tam giác ∆BCD và ∆ADC.
Khi đó: 13GGGCGDGB .
Trong ∆ABE, ta có:
3
121
EA
EG
EB
EG
3
121
GB
GG
GA
GG
13 GGGA
Từ đó: 033 11 GGGGGCGDGBGA .
Bài toán 3: Chứng minh trong tam giác ABC bất kì, trọng tâm G, trực tâm H, tâm
đường tròn ngoại tiếp O thẳng hàng và GH
2
1
GO (Đường thẳng Ơle).
Giải:
E
A
G2
G1
G
D
C
B
G
N
M
A
B C
WWW.VNMATH.COM
Thẳng hàng là một bất biến của phép vị tự nên ta có thể nghĩ đến việc dùng
phép vị tự để giải bài toán này. Yêu cầu của bài toán chứng minh hệ thức
GH
2
1
GO làm ta nghĩ đến phép vị tự tâm G biến O thành H hoặc ngược lại. Dựa
vào hình vẽ ta dự đoán tỉ số là -2 ( hoặc
2
1
). H là trực tâm của ∆ABC còn O là
trực tâm của tam giác có các đỉnh là chân các đường trung tuyến. Với định hướng
đó ta giải bài toán như sau.
Gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.
Ta có: GAGM
2
1
; GBGN
2
1
; GCGP
2
1
Do đó:
PC
B
MAVG
N
:2
1
( kOV là phép vị tự tâm O tỉ số k ).
Phép vị tự bảo tồn tính vuông góc nên sẽ biến
trực tâm của ∆ ABC thành trực tâm của ∆ MNP.
Theo giả thiết, H là trực tâm của tam giác ABC và dễ dàng chứng minh được O
là trực tâm của tam giác ABC.
Suy ra: OHVG :2
1
hay GHGO
2
1
.
Từ đó ta có H, G, O thẳng hàng và GH
2
1
GO .
Chuyển bài toán sang bài toán trong không gian, không phải tứ diện nào cũng có
các đường cao đồng quy tại một điểm nên ta chỉ xét những tứ diện có tính chất
này.
Bài toán 3’ : Trong không gian, cho tứ diện trực tâm ABCD. Chứng minh, trọng
tâm G, trực tâm H và tâm mặt cầu ngoại tiếp tứ diện thẳng hàng và GH = GO.
Giải:
Ta cũng sẽ dùng phép vị tự để giải bài toán trong không gian. Yêu cầu chứng
minh GH = GO gợi ý cho ta nghĩ đến phép vị tự tâm G tỉ số -1.
Lần lượt lấy A′ đối xứng với A, B′ đối xứng với B, C′ đối xứng với C, D′ đối
xứng với D qua G.
P H
O
G
N
M
A
B C
WWW.VNMATH.COM
Xét phép vị tự 1GV , ta có:
'
'
'
'1
D
C
B
A :
D
C
B
AVG
Như vậy, )''''()(:1 DCBAABCDVG
nên phép vị tự sẽ biến trực tâm của tứ
diện ABCD thành trực tâm của tứ diện A’B’C’D’. Theo giả thiết, H là trực tâm
của tứ diện ABCD, ta sẽ chứng minh O là trực
tâm của tứ diện A’B’C’D’.
Thật vậy, trước hết ta sẽ chứng minh
)(' BCDmpOA , từ đó )'''(' DCBOA
vì mp(BCD) // mp(B’C’D’) (các đỉnh khác
chứng minh tương tự).
Do O là tâm mặt cầu ngoại tiếp tứ diện
nên O cách đều các đỉnh B, C, D.
Ta chứng minh A’ cũng cách đều B, C, D.
Gọi G1 là giao điểm của AA’ với mp(BCD).
Trong ∆BA’B’ có G là trung điểm của BB’
và '
3
1
3
1
1 GAGAGG nên G1 là trọng tâm của ∆BCD.
Từ đó, BG1 cắt A’B’ tại trung điểm E của A’B’ và E2GBG 11 . Trong ∆BCD,
G1 là trọng tâm nên BG1 qua trung điểm E’ của CD và BG1 = 2G1E’.
Suy ra: E ≡ E’ hay CD cắt A’B’ tại trung điểm của mỗi đường. Do đó A’DB’C
là hình bình hành.
Hơn nữa, CDBACDAB '' nên A’DB’C là hình thoi.
→ A’D = A’C = CB’ và A’B = B’A.
Ta chứng minh được B’A = CB’ nên suy ra A’B = A’D = A’C hay A’ cách đều
các đỉnh B, C, D.
Suy ra: OHVG :
1 hay GHGO .
Vậy H, G, O thẳng hàng và GO = GH.
Bài toán 4: Chứng minh trong tam giác bất kì, 9 điểm gồm: 3 chân đường 3 cao, 3
trung điểm của 3 cạnh, 3 trung điểm các đoạn nối trực tâm với các đỉnh thuộc một
đường tròn (Đường tròn Ơle).
E G1
B’
O
H
A’
A
G D
C
B
WWW.VNMATH.COM
Giải:
Ta sẽ dùng phép vị tự để giải bài toán.
Giả sử tam giác ABC có H1, H2, H3,
M1, M2, M3, I1, I2, I3 lần lượt là 3 chân
3 đường cao, 3 trung điểm 3 cạnh,
3 trung điểm các đoạn nối trực tâm với
các đỉnh.
Gọi E1, E2, E3, F1, F2, F3 lần lượt là các điểm đối xứng với H qua H1, H2, H3, M1,
M2, M3.
Nhận xét: Ta chứng minh được 9 điểm A, B, C, H1, H2, H3, M1, M2, M3 cùng
thuộc đường tròn ngoại tiếp tam giác ABC.
Qua phép vị tự 2
1
HV thì 1I A , 2I B , 3I C , 11 H E , 22 HE , 33 H E ,
11 M F , 22 M F , 33 M F . Do đó, kết hợp với nhận xét ta kết luận 9 điểm H1,
H2, H3, M1, M2, M3, I1, I2, I3 cùng thuộc một đường tròn ảnh của đường tròn
ngoại tiếp tam giác ABC qua 2
1
HV ( Đpcm).
Bài toán 4’: Cho tứ diện trực tâm ABCD. Gọi H1, H2, H3, H4 , G1, G2, G3, G4, I1,
I2, I3, I4 lần lượt là 4 chân 4 đường cao, 4 trọng tâm và 4 điểm trên 4 đoạn thẳng
nối trực tâm với các đỉnh thỏa mãn
2
1
DI
HI
CI
HI
BI
HI
AI
HI
4
4
3
3
2
2
1
1 . Chứng minh 12
điểm đó cùng thuộc một mặt cầu.
Giải:
Ta sẽ chứng minh I1, G1, H1 thuộc một mặt cầu là ảnh của mặt cầu ngoại tiếp
tứ diện ABCD qua phép vị tự tâm H tỉ số
3
1 (đối với các điểm khác hoàn toàn
tương tự).
Thật vậy, gọi G là trọng tâm của tứ diện, O là tâm mặt cầu ngoại tiếp tứ diện thì
ta có OGGH . Gọi E là điểm thuộc AH1 sao cho HE
3
1
HH1 và F là điểm thuộc
HG1 sao cho
3
1
HF
HG1 .
Ta có: HFAHAF 1HG3AH
I1
O
H
A
G
D
M3
H2
M2
H3
H1
H
M1
A
B C
WWW.VNMATH.COM
)AH-AG3(AHAF 1
= AH2AG
3
4
3.
= )2(2 AHAG
= AO2
(Do G là trung điểm của HO)
A, O, F thẳng hàng và O là trung
điểm của AF.
Dễ thấy H1G1 // EF và 111 GHAH
nên EFAE . Từ đó, E, F thuộc mặt cầu ngoại tiếp tứ diện.
Xét phép vị tự
1
1
1
3
1
H E
G F
I :
AVH
Do 3 điểm A, E, F thuộc mặt cầu ngoại tiếp tứ diện nên I1 , H1, G1 thuộc mặt cầu
ảnh của mặt cầu đó qua phép vị tự 3
1
HV .
Hoàn toàn tương tự ta chứng minh được các điểm còn lại cùng thuộc mặt cầu
này (Đpcm).
Bài toán 5: Cho tam giác ABC và M là một điểm thuộc miền trong tam giác. Gọi
S1, S2, S3 lần lượt là diện tích các tam giác MBC, MCA, MAB. Chứng minh
0321 MCSMBSMAS .
Giải:
Gọi S là diện tích của tam giác ABC, ta biến đổi được biểu thức cần chứng minh
về dạng AC
S
S
AB
S
S
AM 32
Biểu thức trên là biểu diễn của vectơ
AM qua hai vectơ AB và AC nên ta
E
H
C’
K B’
M
A
B C
WWW.VNMATH.COM
định hướng giải bài toán theo cách từ
M ta dựng hai đường thẳng lần lượt
song song với AB và AC, cắt AB
tại B’ và AC tại C’.
Ta có: AM = '' ACAB = ACyABx
Ta sẽ chứng minh
S
S
x 2 và
S
S
y 3 .
Gọi H và K lần lượt là chân các đường vuông góc hạ từ B và M xuống AC, E là
giao điểm của BM và AC.
Ta có:
EB
EM
AB
MC'
AB
AB'
x và
S
S
BH
MK
EB
EM
2
Suy ra
S
S
x 2 . Tương tự ta chứng minh được
S
S
y 3 .
Từ đó: 0321 MCSMBSMAS
Bài toán 5’: Cho tứ diện ABCD, O là một điểm bất kì thuộc miền trong tứ diện.
Gọi V1, V2, V3, V4 lần lượt là thể tích của các tứ diện OBCD, OCDA, OABD và
OABC. Chứng minh 0 ODVOCVOBV OAV 4321 .
Giải:
Tương tự bài toán trong mặt phẳng ta cũng biến đổi đẳng thức cần chứng minh
về dạng AO =
V
V2 AB +
V
V3 AC +
V
V4 AD (Với V là thể tích của tứ diện)
Từ đó ta định hướng sẽ giải bài toán
bằng cách dựng hình hộp nhận AO làm
đường chéo chính.
Dựng hình hộp MNOQ.APRS nhận
AO làm đường chéo chính, ba cạnh kề
nằm trên ba cạnh của tứ diện xuất phát
từ A (Hình bên).
Giả sử AO = x AB + y AC + z AD , ta
chỉ cần chứng minh x =
V
V2 , y =
V
V3 ,
E
B
H
F
S
R
O
P
M
N
Q
A
D
C
K
WWW.VNMATH.COM
z =
V
V4 là đủ.
Ta có: x =
AB
AM
Gọi F là giao điểm của BO và mặt phẳng (ACD).
Hạ đường cao BH, OK và gọi E là giao điểm của BN và AD.
Hai mặt phẳng (BEF) và (ACD) đi qua hai đường thẳng song song và có giao
tuyến là EF nên EF // NO.
Ta có:
V
V2 =
BH
OK =
BF
OF
=
EB
NE
=
AB
AM = x
Suy ra x =
V
V2
Tương tự ta cũng có: y =
V
V3 , z =
V
V4 (Đpcm).
Bài tập
1. Cho ABC víi träng t©m G
a. CMR mọi ®iÓm M ta cã
MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2
b. T×m quü tÝch ®iÓm M sao cho MA2 + MB2 + MC2 = k2 (k cho
tríc)
Bµi to¸n míi: Cho tø diÖn ABCD träng t©m G
a. CMR víi mäi ®iÓm M ta cã:
MA2 + MB2 + MC2 + MD2 = 4MG2 + GA2 + GB2 + GC2 +
GD2
b. T×m quü tÝch M sao cho: MA2 + MB2 + MC2 + MD2 = k2
2. CMR tæng c¸c b×nh ph¬ng ®é dµi c¸c h×nh chiÕu cña c¸c c¹nh
cña mét tø diÖn ®Òu trªn mét mÆt ph¼ng bÊt k× b»ng 4a2.
WWW.VNMATH.COM
3. CMR trong mét tø diÖn ®Òu tæng b×nh ph¬ng c¸c h×nh chiÕu cña
c¸c ®o¹n th¼ng nèi t©m cña nã víi c¸c ®Ønh b»ng a.
4. Bèn ®iÓm A, B, C, D lÇn lît thuéc c¸c c¹nh MN, NP, PQ, QM
cña tø gi¸c ghÒnh MNPQ; ®ång ph¼ng khi vµ chØ khi
1
DM
DQ
.
CQ
CP
.
BP
BN
.
AN
AM
.
(§Þnh lÝ Mªnªlaóyt trong kh«ng gian).
Mét híng khai th¸c kh¸c:
1. CMR trong mét tø gi¸c néi tiÕp trong ®êng trßn: C¸c ®êng
th¼ng qua trung ®iÓm mét c¹nh vµ vu«ng gãc víi c¹nh ®èi diÖn ®ång
qui.
2. CMR trong mét tø diÖn c¸c mÆt ph¼ng ®i qua trung ®iÓm cña mçi
c¹nh vµ vu«ng gãc víi c¹nh ®èi diÖn ®ång qui t¹i mét ®iÓm ( §iÓm
Monge).
File đính kèm:
- Lien he giua HH phang va HH khong gian.pdf