Câu I ( 3,0 điểm ) Cho hàm số có đồ thị (C)
1. Khảo sát sự biến thiên và vẽ đồ thị (C).
2. Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình
Câu II ( 3,0 điểm )
2 trang |
Chia sẻ: manphan | Lượt xem: 847 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án lớp 12 môn Toán - Đề kiểm tra số 68, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm ) Cho hàm số có đồ thị (C)
1. Khảo sát sự biến thiên và vẽ đồ thị (C).
2. Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình
Câu II ( 3,0 điểm )
1. Giải phương trình :
2. Tính tích phân : I =
3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = trên .
Câu III ( 1,0 điểm ) Cho tứ diện SABC có ba cạnh SA,SB,SC vuông góc với nhau từng đôi một với SA = 1cm, SB = SC = 2cm .Xác định tâm và tính bán kính của mặt cấu ngoại tiếp tứ diện , tính diện tích của mặt cầu và thể tích của khối cầu đó .
II . PHẦN RIÊNG ( 3 điểm )
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho 4 điểm A(2;1;1) ,B(0;2;1) ,C(0;3;0) , D(1;0;1) .
a. Viết phương trình đường thẳng BC .
b. Chứng minh rằng 4 điểm A,B,C,D không đồng phẳng .
c. Tính thể tích tứ diện ABCD .
Câu V.a ( 1,0 điểm ) : Tính giá trị của biểu thức .
2. Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz cho M(1;1;1) , hai đường thẳng , và mặt phẳng (P) :
a. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng () .
b. Viết phương trình đường thẳng cắt cả hai đường thẳng và nằm trong mặt phẳng (P) .
Câu V.b ( 1,0 điểm ) : Tìm m để đồ thị của hàm số với cắt trục hoành tại hai điểm phân biệt A,B sao cho tuếp tuyến với đồ thị tại hai điểm A,B vuông góc nhau .
File đính kèm:
- tntoand47.doc