Mục tiêu:
a) Về kiến thức: Nhận biết được góc tạo bởi tia tiếp tuyến và dây cung.
b) Về kĩ năng: Vận dụng được các định lý, hệ quả để giải bài tập.
c) Về thái độ: HS tự giác tích cực chủ động trong học tập.
2) Chuẩn bị của GV và HS:
a) Chuẩn bị của GV: Thước, com pa, bảng phụ.
b) Chuẩn bị của HS: Thước, com pa.
3) Phương pháp giảng dạy: Nêu và giải quyết vấn đề .
8 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1017 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án môn Hình học khối 9 - Tiết 42 đến tiết 44, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 42: §4.GÓC TẠO BỞI TIA TIẾP TUYẾN VÀ DÂY CUNG
Ngày soạn:
Ngày dạy: Tại lớp 9A Sĩ số HS 22 Vắng ..............................
1) Mục tiêu:
a) Về kiến thức: Nhận biết được góc tạo bởi tia tiếp tuyến và dây cung.
b) Về kĩ năng: Vận dụng được các định lý, hệ quả để giải bài tập.
c) Về thái độ: HS tự giác tích cực chủ động trong học tập.
2) Chuẩn bị của GV và HS:
a) Chuẩn bị của GV: Thước, com pa, bảng phụ.
b) Chuẩn bị của HS: Thước, com pa.
3) Phương pháp giảng dạy: Nêu và giải quyết vấn đề .
4) Tiến trình bài dạy:
a) Ổn định tổ chức lớp học : 1'
b) Kiểm tra bài cũ: 5’
? Phát biểu định nghĩa , định lý về góc nội tiếp? Vẽ hình?
- Đặt vấn đề vào bài mới: 1’
Mối quan hệ giữa góc và đường tròn được thể hiện qua góc ở tâm và góc nội tiếp. Bài học hôm nay ta xét mối quan hệ đó qua góc tạo bởi tia tiếp tuyến và dây cung.
c) Dạy nội dung bài mới:
Tg
HĐ của GV và HS
Ghi bảng
12’
16’
5’
* HĐ1: Kh¸i niÖm gãc t¹o bëi tia tiÕp tuyÕn vµ d©y cung
? Quan sát hình vẽ, cho biết các góc này có đặc điểm gì?
? Cho biết các góc nào được gọi là góc tạo bởi tia tiếp tuyến và dây cung?
? Đỉnh của góc; Cạnh của góc như thế nào với đường tròn?
? Góc xAB chắn cung nào ? Góc yAB chắn cung nào?
GV: giới thiệu cung bị chắn
HS làm ?1
? Giải thích vì sao các góc trên không là góc tạo bởi tia tiếp tuyến và dây ?
GV chốt lại khái niệm góc tạo bởi tia tiếp tuyến và dây cung: Đỉnh thuộc đường tròn; 1 cạnh là tia tiếp tuyến; 1 cạnh chứa dây cung.
HS làm ?2
GV vẽ sẵn hình ở bảng phụ
? Cho biết số đo của cung bị chắn trong 3 trường hợp trên?
? Qua bài tập ?2 em rút ra nhận xét gì về mối quan hệ giữa số đo góc tạo bởi tia tiếp tuyến và một dây cung và cung bị chắn?
GV: đó chính là nội dung định lý sau:
* HĐ2: Định lí
HS đọc Định lí, ghi GT, KL định lý
GV vẽ H27(a,b,c) SGK ở bảng phụ
GV hướng dẫn: 3 trường hợp của tâm đường tròn.
? Muốn c/minh = sđ ta phải chứng minh điều gì?
? Sđ bằng bao nhiêu?
HS làm ?3
GV vẽ H. 28 ở bảng phụ
? Hãy so sánh Sđ , với
sđ ?
? Qua kết quả ?3 ta rút ra kết luận gì?
* HĐ3: Hệ quả
HS đọc nội dung hệ quả.
1.Khái niệm góc tạo bởi tia tiếp tuyến và dây cung: (SGK - 77)
hoặc là các góc tạo bởi tia tiếp tuyến và dây cung
chắn và chắn
lµ gãc t¹o bëi tia tiÕp tuyÕn vµ mét d©y cung
?1(SGK - 77)
H23 không có cạnh nào là tia tiếp tuyến.
H24 Không có cạnh nào chứa dây cung.
H25 không có cạnh nào là tia tiếp tuyến.
H26 đỉnh không thuộc (O)
?2(SGK - 77)
sđ = 600, sđ = 300,
sđ = 900; sđ =1800,
sđ =1200, sđ =2400
2- Định lý (SGK-73)
GT
(O); là góc tạo bởi tia tiếp
tuyến và một dây cung
KL
= sđ
Chứng minh
a. Tâm O nằm trên cạnh AB của Ta có = 900 ( Ax là tiếp tuyến)
sđ = 1800 => = sđ
b. Tâm O nằm ngoài góc BAx
Kẻ đường cao OH của DAOB
OH là phân giác của góc AOB
( DAOB cân tại O) =
mà = sđ = sđ
Mặt khác = (cùng phụ )
= sđ
c.Tâm O nằm trong góc BAC (tự c/minh)
?3(SGK-79)
= sđ (góc tạo bởi tia tiếp
tuyến và dây cung )
= sđ = sđ (góc nội tiếp) => =
3- Hệ quả (SGK-79)
d) Củng cố - Luyện tập: 5’
* Bài tập 27 (SGK-79 )
Ta có = sđ (định lí góc tạo bởi tia tiếp tuyến và dây).
= sđ (định lí góc nội tiếp)
Þ
DAOP cân (vì AO = OP = bán kính)
Þ
Vậy: = (tính chất bắc cầu).
e) Hướng dẫn HS tự học ở nhà: 2’
Học bài và làm bài tập: 28, 29 (SGK-79)
5) Rút kinh nghiệm:
Tiết 43: LUYỆN TẬP
Ngày soạn:
Ngày dạy: ............................Tại lớp 9A Sĩ số HS 22 Vắng ..............................
1) Mục tiêu:
a) Về kiến thức: Củng cố định lí, hệ quả về số đo của góc tạo bởi tia tiếp tuyến và dây cung.
2, Kĩ năng: Vận dụng được các định lý, hệ quả để giải bài tập.
c) Về thái độ: Cẩn thận, sáng tạo trong vẽ hình và chứng minh.
2) Chuẩn bị của GV và HS:
a) Chuẩn bị của GV: Thước, com pa, bảng phụ.
b) Chuẩn bị của HS: Thước, com pa.
3) Phương pháp giảng dạy: Tích cực hoá HĐ của HS.
4) Tiến trình bài dạy:
a) Ổn định tổ chức lớp học : 1'
b) Kiểm tra bài cũ: 5’
? Phát biểu định lí, hệ quả về số đo của góc tạo bởi tia tiếp tuyến và dây cung?
Bài tập: Cho hình vẽ: biết xx’ là tiếp tuyến của (O). Tính số đo góc xAB?
Ta có: = = 500 ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AB)
- Đặt vấn đề vào bài mới: 1’
Các em đã nắm được định lí và hệ quả về số đo của góc tạo bởi tia tiếp tuyến và dây cung .Tiết học hôm nay các em sẽ được vận dụng các kiến thức trên vào giải các bài tập liên quan.
c) Dạy nội dung bài mới:
Tg
HĐ của GV và HS
Ghi bảng
12’
11’
10’
HS đọc đề bài
GV hướng dẫn vẽ hình
HS ghi GT, KL
? Góc ABC thuộc góc nào đã học?
HS: Góc tạo bởi tia tiếp tuyến và dây cung.
? Vậy góc ABC được tính như thế nào?
HS: =sđ
? Tính sđ như thế nào?
HS: Tính
? Hãy tính ?
GV gợi ý: Chứng minh D BOC đều.
HS trình bày lời giải
? Tính góc BAC như thế nào?
GV hướng dẫn: sử dụng định lí tổng số đo các góc trong của tứ giác ta tính được góc BAC.
? Hãy trình bày chứng minh
HS đọc đề bài
GV hướng dẫn vẽ hình
HS ghi GT, KL của bài toán
? Khi gặp các bài toán chứng minh đẳng thức về tích hai đoạn thẳng thì ta thường phân tích như thế nào để tìm ra hướng giải bài toán?
GV gợi ý: ta đưa về tỉ lệ thức giữa các đoạn thẳng để chỉ ra các tam giác đồng dạng.
GV: hướng dẫn chứng minh theo sơ đồ
AB.AM = AC.AN
Ý
=
Ý
∆ ABC t ∆ ANM
Ý
= ; chung
? Hãy trình bày cách chứng minh?
GV chốt lại: Để c/minh một đẳng thức tích ta thường c/minh hai tam giác đồng dạng.
HS đọc đề bài
GV hướng dẫn vẽ hình
HS ghi GT, KL của bài toán
GV: hướng dẫn chứng minh theo sơ đồ
MT2 = MA. MB
Ý
Ý
DTMAt D BMT
Ý
= ; chung
? Hãy trình bày chứng minh?
GV lưu ý HS : Kết quả của bài toán này được coi như một hệ thức lượng trong đường tròn, ta cần ghi nhớ.
1, Bài 31(SGK-79):
GT
(O;R)
dây BC = R
AB, AC là tiếp tuyến
KL
Tính ,
Giải
*Tính góc ABC:
Ta có BC = OB = OC = R (gt)
BOC là tam giác đều
= 600
mà = sđ (t/c góc ở tâm)
sđ = 600
Ta có: =sđ (góc nội tiếp và góc giữa tia tiếp tuyến và dây cïng ch¾n cung BC)
Vậy = = . 600 = 300
*Tính góc BAC:
Ta có:
= 1800 -
= 1800 - 600 = 1200
(tổng các góc trong một tứ giác bằng 3600)
2,Bài 33(SGK- 80)
GT
A, B, C Î (O)
At là tiếp tuyến; d // At
d Ç AC = {N}
d Ç AB = {M}
KL
AB.AM = AC.AN
Giải
Ta có: = (góc nội tiếp và góc giữa tia tiếp tuyến và dây cùng chắn cung AB)
= (sole trong)
Þ =
D ABC và D ANM có chung
=
nên D ABC t D ANM (g.g)
Þ =
Vậy AM.AB = AC . AN
3, Bài 34(SGK-30):
GT
(O); tiếp tuyến MT
cát tuyến MAB
KL
MT2 = MA.MB
Giải
Xét D TMA và D BMT có chung = (cùng chắn cung TA)
Þ D TMAt D BMT (g.g)
Þ
Þ MT2 = MA.MB
d) Củng cố - Luyện tập: 3’
Nhắc lại các dạng bài tập: Chứng minh hệ thức hình học; Tính số đo góc, chứng minh hai góc bằng nhau... dựa vào định lí, hệ quả về góc tạo bởi tia tiếp tuyến và dây cung.
e) Hướng dẫn HS tự học ở nhà : 2’
Về nhà làm các bài tập 32;35 (SGK- 80)
5) Rút kinh nghiệm:
.........................................................................
Tiết 44: §5.GÓC CÓ ĐỈNH BÊN TRONG ĐƯỜNG TRÒN
GÓC CÓ ĐỈNH BÊN NGOÀI ĐƯỜNG TRÒN
Ngày soạn:
Ngày dạy: ............................Tại lớp 9A Sĩ số HS 22 Vắng ..............................
1) Mục tiêu:
a) Về kiến thức: Nhận biết được góc có đỉnh ở bên trong hay bên ngoài đường tròn. Biết cách tính số đo của các góc trên.
b) Kĩ năng: Vận dụng được các định lý để giải bài tập.
c) Về thái độ: HS tự giác tích cực chủ động trong học tập.
2) Chuẩn bị của GV và HS:
a) Chuẩn bị của GV: Thước, com pa, bảng phụ.
b) Chuẩn bị của HS: Thước, com pa.
3) Phương pháp giảng dạy: Nêu và giải quyết vấn đề .
4) Tiến trình bài dạy:
a) Ổn định tổ chức lớp học : 1'
b) Kiểm tra bài cũ: 5’
? Định nghĩa góc nội tiếp, phát biểu tính chất của góc nội tiếp? Vẽ hình?
- Đặt vấn đề vào bài mới: 1’
GV đưa hình vẽ đóng khung ở đầu bài vào bảng phụ và đặt vấn đề:
sđ của và sđ của có quan hệ gì với số đo của các cung và đó là ND bài học hôm nay
c) Dạy nội dung bài mới:
Tg
HĐ của GV và HS
Ghi bảng
15’
15’
* HĐ1: Góc có đỉnh ở bên trong đường tròn
HS quan sát H31(SGK)
? Em có nhận xét gì về đỉnh của góc BEC và góc DEA ?
HS: và có đỉnh E nằm bên trong đường tròn.
? Xác định cung nằm trong góc đó?
HS đọc định lý
HS ghi giả thiết, kết luận.
HS thực hiện ?1
? Trong EDB có góc ngoài quan hệ như thế nào với & ?
? Hãy tính thông qua , thông qua .
* HĐ2: Góc có đỉnh ở bên ngoài đường tròn
HS quan sát H 33; 34; 35(SGK).
? Nhận xét các trường hợp xảy ra đối với hai cạnh của góc?
HS đọc định lí
GV vẽ H.26(SGK) ở bảng phụ
HS ghi GT, KL
HS thực hiện ?2
GV hướng dẫn:
- Áp dụng tính chất của góc ngoài AEC
- Áp dụng tính chất của góc nội tiếp.
GV: Trường hợp H.37; H.38 chứng minh tương tự.
1, Góc có đỉnh ở bên trong đường tròn
và có đỉnh E nằm trong (0)
Hai cung bị chắn là và
* Định lý (SGK - 81)
GT
là góc có đỉnh ở bên trong (O)
KL
= (Sđ + Sđ )
?1: Chứng minh ĐL
D DEB có: + =
(t/c góc ngoài của tam giác )
Mà + =sđ( + )
(t/c góc nội tiếp)
Vậy =sđ( + )
2, Góc có đỉnh ở bên ngoài đường tròn
H. 33: Góc BEC là góc có đỉnh ở bên ngoài đường tròn.
Hai cạnh cắt đường tròn, hai cung bị chắn là DA và BC
H.34: Góc BEC là góc có đỉnh trong (O)
Có 1 cạnh là tiếp tuyến, cạnh kia là cát tuyến, hai cung bị chắn là:CA và BC
H.35: Góc BEC là góc có đỉnh ở ngoài đường tròn, hai cạnh là hai tiếp tuyến
* Định lý (SGK-81):
GT
là góc có đỉnh bên ngoài (O)
KL
= ( sđ - sđ )
?2: Chứng minh ĐL
là góc ngoài của tam giác ACE
Ta có: = +
=> = -
=> = sđ - sđ
=> = ( sđ - sđ )
d) Củng cố - Luyện tập: 6’
* Bài tập 36(SGK-82)
Giải: = = (sđ +sđ )
= =(sđ +sđ )
Theo gt ta cú = ; =
=> = => ∆AHE cân
e) Hướng dẫn HS tự học ở nhà : 2’
- Học thuộc hai định lý về góc có đỉnh ở trong hoặc có đỉnh ở ngoài đường tròn
- Làm các bài tập 37;38(SGK-82)
5) Rút kinh nghiệm:
File đính kèm:
- GA Hinh 9T4244 Chuan KTKN.doc