A. Mục tiêu: Qua bài học học sinh cần hiểu được:
1. Về kiến thức:
+ Biết định nghĩa giới hạn một bên của hàm số và định lý của nó .
+ Biết định nghĩa giới hạn hữu hạn của hàm số tại vô cực.
2. Về kỹ năng:
+ Biết vận dụng định nghĩa vào việc giải một số bài toán đơn giản về giới hạn của hàm số.
+ Biết vận dụng các định lý về giới hạn của hàm số để tính các giới hạn đơn giản.
B. Chuẩn bị của thầy và trò:
1. Chuẩn bị của trò: Làm bài tập ở nhà và xem trước bài mới.
2. Chuẩn bị của thầy: Giáo án
C. Phương pháp dạy học:
+ Nêu vấn đề,đàm thoại.
+ Tổ chức hoạt động nhóm.
3 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 2578 | Lượt tải: 4
Bạn đang xem nội dung tài liệu Giáo án môn Toán học 11 - Tiết 6: Giới hạn của hàm số (tiếp), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 6 GIỚI HẠN CỦA HÀM SỐ (tt)
A. Mục tiêu: Qua bài học học sinh cần hiểu được:
1. Về kiến thức:
+ Biết định nghĩa giới hạn một bên của hàm số và định lý của nó .
+ Biết định nghĩa giới hạn hữu hạn của hàm số tại vô cực.
2. Về kỹ năng:
+ Biết vận dụng định nghĩa vào việc giải một số bài toán đơn giản về giới hạn của hàm số.
+ Biết vận dụng các định lý về giới hạn của hàm số để tính các giới hạn đơn giản.
B. Chuẩn bị của thầy và trò:
1. Chuẩn bị của trò: Làm bài tập ở nhà và xem trước bài mới.
2. Chuẩn bị của thầy: Giáo án
C. Phương pháp dạy học:
+ Nêu vấn đề,đàm thoại.
+ Tổ chức hoạt động nhóm.
Tiến trình bài cũ:
Ổn định lớp
Kiểm tra bài cũ: Thông qua các hoạt động trong giờ học.
3. Bài mới
Hoạt động của HS
Hoạt động của GV
Nội dung ghi bảng
Nghe và chép bài
H: Sử dụng công thức (2)
H: Sử dụng công thức (1)
Vậy không tồn tại vì
Do đó cần thay số 4 bằng số -7
dần tới 0
dần tới 0
Hàm số trên xác định trê n (-; 1) và trên (1; +).
HS nêu hướng giải và lên bảng làm.
Định lý 1 vẫn còn đúng.
Chia cả tử và mẫu cho
=
=
= 5
HS lên bảng trình bày
GV giới thiệu giới hạn một bên.
H: Khi thì sử dụng công thức nào ?
H: = ?
H: Khi thì sử dụng công thức nào ?
H: = ?
H: Vậy = ?
H: Trong biểu thức (1) xác định hàm số ở ví dụ trên cần thay số 4 bằng số nào để hàm số có giới hạn là -1 khi ?
Cho hàm số có đồ thị như hvẽ
H: Khi biến dần tới dương vô cực, thì dần tới giá trị nào ?
H: Khi biến dần tới âm vô cực, thì dần tới giá trị nào ?
GV vào phần mới
H: Tìm tập xác định của hàm số trên ?
H: Giải như thế nào ?
Với c, k là các hằng số và k nguyên dương,
?
?
H: Khi hoặc thì có nhận xét gì về định lý 1 ?
H: Giải như thế nào?
H: Chia cả tử và mẫu cho , ta được gì?
Kết quả ?
Gọi HS lên bảng làm
3. Giới hạn một bên:
ĐN2: SGK
ĐL2: SGK
Ví dụ: Cho hàm số
Tìm , , ( nếu có ).
Giải:
Vậy không tồn tại vì
II. Giới hạn hữu hạn của hàm số tại vô cực:
ĐN 3: SGK
Ví dụ: Cho hàm số . Tìm và .
Giải:
Hàm số đã cho xác định trên (-; 1) và trên (1; +).
Giả sử () là một dãy số bất kỳ, thoả mãn < 1 và .
Ta có
Vậy
Giả sử () là một dãy số bất kỳ, thoả mãn > 1 và .
Ta có:
Vậy
Chú ý:
a) Với c, k là các hằng số và k nguyên dương, ta luôn có :
; .
b) Định lý 1 về giới hạn hữu hạn của hàm số khi vẫn còn đúng khi hoặc
Ví dụ: Tìm
Giải: Chia cả tử và mẫu cho , ta có:
= = = =
IV. Củng cố:
Xem lại giới hạn một bên, giới hạn hữu hạn của hàm số tại vô cực.
Làm bài tập 2, 3 SGK
---------------------------------------
File đính kèm:
- tiet 6.doc