Về kiến thức :
Nắm được khái niệm hàm số luỹ thừa , tính được đạo hàm cuả hàm số luỹ thừa va khảo sát hàm số luỹ thừa
2.Về kĩ năng :
Thành thạo các bước tìm tập xác định , tính đạo hàm và các bước khảo sát hàm số luỹ thừa
3.Về tư duy , thái độ:
Biết nhận dạng baì tập
Cẩn thận,chính xác
4 trang |
Chia sẻ: manphan | Lượt xem: 838 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án môn Toán lớp 12 - Tiết 24 - Bài 2: Hàm số luỹ thừa, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 24 §2.HÀM SỐ LUỸ THỪA
Ngày soạn: 15/10/2008
I. Mục tiêu
1. Về kiến thức :
Nắm được khái niệm hàm số luỹ thừa , tính được đạo hàm cuả hàm số luỹ thừa va khảo sát hàm số luỹ thừa
2.Về kĩ năng :
Thành thạo các bước tìm tập xác định , tính đạo hàm và các bước khảo sát hàm số luỹ thừa
3.Về tư duy , thái độ:
Biết nhận dạng baì tập
Cẩn thận,chính xác
II) Chuẩn bị
Giáo viên :Giáo án , bảng phụ ,phiếu học tập
Học sinh : ôn tập kiên thức,sách giáo khoa.
III) Phương pháp :
Hoạt động nhóm + vấn đáp + nêu và giải quyết vấn đề
IV) Tiến trình bài học
1) Ổn định lớp kiểm tra sĩ số lớp 12B1:.ngày dạy:..
2) Kiểm tra bài cũ
Nhắc lại các quy tắc tính đạo hàm
3) Bài mới:
* Hoạt động 1:
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
Thế nào là hàm số luỹ thừa , cho vd minh hoạ?.
- Giáo viên cho học sinh cách tìm txđ của hàm số luỹ thừa cho ở vd ;a bất kỳ .
-Kiểm tra , chỉnh sửa
Trả lời.
- Phát hiện tri thức mới
- Ghi bài
Giải vd
I)Khái niệm :
Hàm số R ; được gọi là hàm số luỹ thừa
Vd :
* Chú ý
Tập xác định của hàm số luỹ thừa tuỳ thuộc vào giá trị của
- nguyên dương ; D=R
+
+ a không nguyên; D = (0;+)
VD2 : Tìm TXĐ của các hàm số ở VD1
Phiếu học tập (Phát phiếu học tập cuối giờ để củng cố)
1) Tìm tập xác định của các hàm số sau :
a)
b)
2) Tính đạo hàm cua hàm số sau :
a)
b)
* Hoạt động 2: Đạo hàm của HSố luỹ thừa.
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
Nhắc lai quy tắc tính đạo hàm của hàm số
- Dẫn dắt đưa ra công thức tương tự
- Khắc sâu cho hàm số công thức tính đạo hàm của hàm số hợp
- Cho vd khắc sâu kiến thức cho hàm số
- Theo dõi , chình sữa
Trả lời kiến thức cũ
- ghi bài
- ghi bài
- chú ý
- làm vd
II) Đạo hàm cuả hàm số luỹ thừa
Vd3:
*Chú ý:
VD4:
Hoạt động 3: Khảo sát hàm số luỹ thừa
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
- Giáo viên nói sơ qua khái niệm tập khảo sát
- Hãy nêu lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số bất kỳ
- Chỉnh sửa
- Chia lớp thành 2 nhóm gọi đại diện lên khảo sát hàm số : ứng với0
- Sau đó giáo viên chỉnh sửa , tóm gọn vào nội dung bảng phụ.
- H: em có nhận xét gì về đồ thị của hàm số
- Giới thiệu đồ thị của một số thường gặp :
-Hoạt động HS Vd3 SGK, sau đó cho VD yêu cầu học sinh khảo sát
-Học sinh lên bảng giải
- Hãy nêu các tính chất của hàm số luỹ thừa trên
- Dựa vào nội dung bảng phụ
- Chú ý
- Trả lời các kiến thức cũ
- Đại diện 2 nhóm lên bảng khảo sát theo trình tự các bước đã biết
- ghi bài
- chiếm lĩnh trị thức mới
- TLời : (luôn luôn đi qua điểm (1;1)
-Chú ý
-Nắm lại các baì làm khảo sát
-Theo dõi cho ý kiến nhận xét
-Nêu tính chất
- Nhận xét
III) Khảo sát hàm số luỹ thừa
( nội dung ở bảng phụ Phiêú học tập 1)
* Chú ý : khi khảo sát hàm số luỹ thừa với số mũ cụ thể , ta phải xét hàm số đó trên toàn bộ TXĐ của nó
Vd : Khảo sát sự biến thiên và vẽ đồ thi hàm số
-
- Sự biến thiên
Hàm số luôn nghịch biến trênD
TC : ;
Đồ thị có tiệm cận ngang là trục hoành,tiệm cận đứng là trục tung
BBT : x - +
-
y +
0
Đồ thị:
- Bảng phụ , tóm tắt
- Bảng phụ 1:
y = xa , a > 0
y = xa , a < 0
1. Tập khảo sát: (0 ; + ¥).
2. Sự biến thiên:
y' = axa-1 > 0 , "x > 0
Giới hạn đặc biệt:
Tiệm cận: Không có
3. Bảng biến thiên:
x 0 +¥
y’ +
y +¥
0
1. Tập khảo sát: ( 0 ; + ¥)
2. Sự biến thiên:
y' = axa-1 0
Giới hạn đặc biệt:
Tiệm cận:
Trục Ox là tiệm cận ngang
Trục Oy là tiệm cận đứng của đồ thị.
3. Bảng biến thiên:
x 0 +¥
y’ -
y +¥
0
4. Đồ thị (H.28 với a > 0) 4. Đồ thị (H.28 với a < 0)
- Bảng phụ 2:
* Đồ thị (H.30)
Bảng tóm tắt các tính chất của hàm số luỹ thừa y = xa trên khoảng (0 ; +¥)
a > 0
a < 0
Đạo hàm
y' = a x a -1
y' = a x a -1
Chiều biến thiên
Hàm số luôn đồng biến
Hàm số luôn nghịch biến
Tiệm cận
Không có
TCN là trục Ox, TCĐ là trục Oy
Đồ thị
Đồ thị luôn đi qua điểm (1 ; 1)
File đính kèm:
- Tiết 24.doc