I. MỤC TIÊU BÀI HỌC :
HS nắm được định nghĩa tam giác cân, tam giác vuông cân, tam giác đều. Tính chất về góc của tam giác cân, tam giác vuông cân, tam giác đều
Biết vẽ cân, vuông cân. Biết chứng minh1 là cân, vuông cân, đều. Biết vận dụng các tính chất của cân, vuông cân, đều để tính số đo góc, để chứng minh các góc bằng nhau
Phát huy tư duy nhanh nhạy, hoạt bát của HS
II. CHUẨN BỊ CỦA GV và HS :
1. Giáo viên : Thước thẳng, com pa, thước đo góc, ê ke, bảng phụ
2. Học sinh : Thước thẳng, compa, thước đo góc, bảng nhóm
Thực hiện hướng dẫn tiết trước
76 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1141 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án Toán học 7 - Tiết 33 đến tiết 62, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn:7/1/2011
Ngày dạy:8/1/2011
Tuần 20-tiết 33 TAM GIÁC CÂN
I. MỤC TIÊU BÀI HỌC :
- HS nắm được định nghĩa tam giác cân, tam giác vuông cân, tam giác đều. Tính chất về góc của tam giác cân, tam giác vuông cân, tam giác đều
- Biết vẽ D cân, D vuông cân. Biết chứng minh1 D là D cân, D vuông cân, D đều. Biết vận dụng các tính chất của D cân, D vuông cân, D đều để tính số đo góc, để chứng minh các góc bằng nhau
- Phát huy tư duy nhanh nhạy, hoạt bát của HS
II. CHUẨN BỊ CỦA GV và HS :
1. Giáo viên : - Thước thẳng, com pa, thước đo góc, ê ke, bảng phụ
2. Học sinh : - Thước thẳng, compa, thước đo góc, bảng nhóm
- Thực hiện hướng dẫn tiết trước
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định : 1’ Kiểm tra sĩ số
2. Kiểm tra bài cũ : 5’
HS1 : - Hãy phát biểu ba trường hợp bằng nhau của tam giác ?
A
B
C
E
D
F
I
H
K
- Hãy nhận dạng tam giác ở m ỗi hình
Trả lời : - DABC là D nhọn ; DEDF là D vuông ; DHIK là D tù
GV đặt vấn đề :
Để phân loại các D trên, người ta đã dùng yếu tố về góc. Vậy có loại D đặc biệt nào mà lại sử dụng yếu tố về cạnh để xây dựng khái niệm không ?
® Vào bài mới
3. Bài mới :
Hoat động của Giáo viên - Học sinh
Nội dung
Bổ sung
A
B
C
HĐ 1 : Định nghĩa :7’
GV đưa câu hỏi : cho hình vẽ, em hãy đọc
xem hình vẽ cho biết điều gì ?
HS : hình cho biết DABC có hai cạnh bằng nhau là : cạnh AB và cạnh AC
GV : DABC có AB = AC, đó là D cân.
Hỏi : Thế nào là D cân ?
HS Trả lời : SGK
GV Hướng dẫn HS cách vẽ DABC cân tại A. Vẽ cạnh BC. Dùng com pa vẽ các cung tâm B và tâm C có cùng bán kính sao cho chúng cắt nhau tại A
HS : thực hiện vẽ theo sự hướng dẫn của GV
GV giới thiệu : cạnh bên, cạnh đáy, góc ở đáy, góc ở đỉnh qua ví dụ cụ thể D ABC
GV cho HS làm ?1
GV treo bảng phụ đề ?1 và hình vẽ.
GV gọi 2HS lần lượt trả lời miệng bài ?1
HS: đlên ghi vào bảng phụ
HĐ 2 : Tính chất :8’
GV yêu cầu HS giải ?2 (treo bảng phụ)
Cho DABC cân tại A. Tia phân giác của góc A cắt BC ở D. Hãy so sánh và .
HS : đọc đề và vẽ hình
Hỏi : Qua hình vẽ dự đoán xem 2 góc và có bằng nhau không ?
HS : chứng minh
Xét DABD và DACD. Có AB = AC (gt)
Â1 = Â2 (gt), AD chung
ÞDABD = DACD (c.g.c)
Þ
Vậy 2 góc ở đáy của D cân như thế nào ?
GV yêu cầu HS phát biểu định lý 1
HS nêu định lý 1 SGK
Ngược lại nếu D ABC có 2 góc bằng nhau thì D đó có phải là D cân hay không ?
1HS : phát biểu định lý 2
GV giới thiệu D vuông cân : Cho D ABC như hình vẽ
Hỏi : D đó có những đặc điểm gì ?
HS : DABC ở hình vẽ có Â = 1v ; AB = AC
GV : DABC ở hình trên gọi là D vuông cân.
GV yêu cầu HS nêu định nghĩa D vuông cân
HS : nêu định nghĩa D vuông cân SGK
Yêu cầu HS giải bài ?3 (Bảng phụ)
Gọi HS vẽ hình và ghi GT, KL
HS : vẽ hình và ghi GT, KL
GT Â = 1V
AB = AC
KL
GV gọi 1HS lên bảng tính
HĐ 3 : Tam giác đều :5’
Hỏi : Nếu cạnh đáy của D cân cũng bằng cạnh bên thì D đó có đặc điểm gì về 3 cạnh ?
HS : 3 cạnh bằng nhau
GV :D có 3 cạnh bằng nhau thì gọi là D đều. Tam giác đều là tam giác như thế nào?
GV hướng dẫn HS vẽ D đều bằng thước và compa
GV cho HS làm bài ?4
(đề bài trên bảng phụ)
GV gọi 1HS trình bày câu a
GV có thể cho HS dự đoán số đo của mỗi góc bằng cách đo góc. Sau đó gọi 1 HS lên bảng chứng minh câu b
GV chốt lại : Trong 1 tam giác đều mỗi góc bằng 600 Þ đó chính là hệ quả 1
Hỏi : Ngoài việc dựa vào định nghĩa để chứng minh tam giác đều, em còn có cách chứng minh nào khác không ?
GV treo bảng phụ 3 hệ quả
HĐ4:Luyện tập, củng cố
Bài 47 tr 127 SGK :
GV treo bảng phụ
Gọi 1HS giải hình 116
GV gọi HS nhận xét và sửa sai nếu có
HĐ 5: Dặn dò về nhà.
GV: lam bài tập 47-48-49 SGK/127
Học thuộc định nghĩa và tính chất của D cân, D đều
Xem trước bài tập phần luyện tập
HS: ghi chép và lắng nghe
Định nghĩa :
Tam giác cân là tam giác có hai cạnh bằng nhau
 : góc đỉnh ;
là các góc ở đáy.
AB, AC cạnh bên
BC cạnh đáy
Bài ?1
Tam giác cân
Cạnh bên
Cạnh đáy
Góc ở đáy
Góc ở đỉnh
DABC cân tại A
AB, AC
BC
BÂC
DADE cân tại A
AD,
AE
DE
DÂE
DACH cân tại A
AC, AH
CH
CÂH
2. Tính chất :
Định lý 1 :
Trong một tam giác cân, hai góc ở đáy bằng nhau
D ABC cân tại A
Þ
Định lý 2 :Nếu một tam giác có hai góc bằng nhau thì đó là tam giác cân
Định nghĩa : tam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau
DABC vuông cân tại A
Þ Â = 1v, AB = AC
Bài ?3
Giải
DABC có Â = 1v,
Þ = 900
Mà DABC cân tại A
Þ (tính chất D cân)
Þ = 450
3. Tam giác đều :
Định nghĩa :
Tam giác đều là tam giác có 3 cạnh bằng nhau
DABC là D đều
Bài ?4
a) Do AB = AC nên D ABC cân tại A Þ (1)
Do AB = AC nên D ABC cân tại B Þ = Â (2)
b) Từ (1) và (2) ở câu a
Þ Â =
mà Â + = 1800
Þ Â = = 600
Hệ quả :
- Trong 1tam giác đều, mỗi góc bằng 600.
- Nếu 1 tam giác có 3 góc bằng nhau thì D đó là D đều
- Nếu 1 tam giác cân có 1 góc bằng 600 thì đó là D đều.
Bài 47 tr 127 SGK :
Hình 116 D ACE là D cân vì cạnh AC=AE
Hình 117: D GHI là D cân vì =700
Hình 118: D OPK, DKMO và D PNO là hai D cân
Vì: OK=OP, KM=MO và ON=OP
D ONM là D đều vì ON=ON=NM
Rút kinh nghiệm:……………………………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………………………………………….
……………………………………………………………………………………………………………………………………………………………………………………………………………..
Ngày soạn:7/1/2011
Ngày dạy:8/1/2011
Tuần 20-tiết 34 LUYỆN TẬP
I. MỤC TIÊU BÀI HỌC :
- Củng cố định nghĩa và tính chất của tam giác cân, tam giác vuông cân, tam giác đều. Luyện giải các bài tập về tính góc, chứng minh tam giác cân
- Rèn luyện kỹ năng suy luận, chứng minh, vẽ hình
- Tích cực, phát huy trí lực của học sinh
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ :
- Giáo viên : -Thước thẳng com pa, thươc đo góc, êke, bảng phụ
-Học sinh : - Thước thẳng, compa, thước đo góc, bảng nhóm
- Thực hiện hướng dẫn tiết trước
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định : Kiểm tra sĩ số lớp 1’
2. Kiểm tra bài cũ : 8’
HS1 : - Định nghĩa tam giác cân. Phát biểu định lý 1 và định lý 2
về tính chất của tam giác cân
- Sửa bài tập 46 tr 127 SGK
Đáp án : a) - Vẽ đoạn thẳng AC = 3cm
- Vẽ hai cung tròn (A, 4cm) và (C, 4cm)
Chúng cắt nhau tại B Þ DABC cân tại B
GT DABC
AB = AC
 = 400
KL
HS2 : - Định nghĩa tam giác đều và hệ
quả của nó
- Sửa bài tập 49 tr 127
Đáp án : a) Góc ở đỉnh của tam giác cân bằng 400
Þ các góc ở đáy của tam giá cân bằng
nhau và bằng : = = 700
b) Góc ở đáy của tam giác cân bằng 400 Þ góc ở đỉnh của
tam giác cân bằng 1800 - 400 . 2 = 1000
3.Bài mới :
Hoạt động của Giáo viên - Học sinh
Nội dung
Bổ sung
HĐ I Luyện tập :
Bài 51 tr 128 SGK :
GV đưa đề bài bảng phụ
GV gọi 1 HS vẽ hình và ghi GT, KL
HS lên bảng vẽ hình và ghi GT, KL
DABC (AB = AC
GT D Ỵ AC, E ỴAB
AD = AE ;
BD cắt CE tại I
KL a) SS :
b) DIBC là D gì ? Vì sao ?
GV gợi ý : Muốn so sánh ta làm thế nào ?
GV gọi 1HS trình bày mịêng bài chứng minh, sau đó yêu cầu 1 HS lên bảng trình bày.
Hỏi : các em có thể dự đoán D IBC là D gì ?
GV yêu cầu HS trình bày miệng cách chứng minh này
Bài 50 tr 127 SGK tập 1
GV treo bảng phụ
Tính trong từng trường hợp
a) Â = 1450
b) A = 1000
Bài 52 tr 128 SGK tập 1 :
(đề bài đưa lên bảng phụ)
GV yêu cầu cả lớp vẽ hình và gọi 1HS lên bảng vẽ hình, ghi GT, KL bài toán
1 HS lên bảng vẽ hình và ghi GT, KL
xÔy = 1200
AỴtia phân giác xÔy
GT AB ^ 0x ; AC ^ 0y
KL DABC là D gì ? vì sao ?
Hỏi : Theo em, D ABC là D gì ? Hãy chứng minh dự đoán đó
HS : dự đoán DABC là D đều
GV gọi 1HS chứng minh
4. Hướng dẫn học ở nhà :
- Ôn lại định nghĩa và tính chất của tam giá cân, tam giác đều. Cách chứng minh một tam giác là tam giác cân, là tam giác đều
- Bài tập về nhà số 72, 73, 74, 75, 76 tr 107 SBT
- Đọc trước bài định lý “Pytago”
Bài 51 tr 128 SGK :
Chứng minh
a) Xét 2 D ABD và ACE. Có : AB = AC(gt)
 chung ; AD = AE (gt)
Þ DABD = DACE (c.g.c)
Þ(2góctương ứng)
b) Vì (cmt)
mà (gt)
Þ (vì tia BD nằm giữa BA, BC, tia CE nằm giữa CA, CB
Þ tg IBC cân tại I
Bài 50 tr 127 SGK tập 1
a) Â = 1450
DABCcân tại A nên
Þ =17,50
b) Â = 1000
Tương tự (a) ta có :
Þ= = 400
Bài 52 tr 128 SGK tập 1 :
0
Giải
Xét DA0B và DA0C có :
0A cạnh chung
Ô1 = Ô2 (0A là phân giác)
Þ DA0B = DA0C (ch-gn)
Þ AB = AC
Þ DABC cân tại A
Trong D vuông A0C có :
Â2 = 300 (vì D A0B:= 1v Ô2 = 600 )
Tương tự Â1 = 300
Þ Â1+Â2 = 600. DABC cân có 1 góc = 600 Þ DABC đều
Rút kinh nghiệm:…………………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Ngày soạn:7/1/2011
Ngày dạy:8/1/2011
Tuần 21-tiết 35 ĐỊNH LÝ PYTAGO
I. MỤC TIÊU BÀI HỌC :
- Nắm được định lý Pytago, về quan hệ giữa ba cạnh của D vuông. Nắm được định lý Pytago đảo.
- Biết vận dụng định lý Pytago để tính độ dài một cạnh của tam giác vuông khi biết độ dài của hai cạnh kia. Biết vận dụng định lý đảo của định lý Pytago để nhận biết một tam giác là tam giác vuông cân.
- Biết vận dụng các kiến thức đã học trong bài vào bài toán thực tế
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ :
1. Giáo viên :- Bảng phụ ghi đề bài tập, định lý Pytago (thuận, đảo)
- 1 Bảng phụ có dán sẵn hai tấm bìa màu hình vuông có cạnh bằng (a + b) và 8 tờ giấy trắng hình tam giác vuông bằng nhau, có độ dài hai cạnh góc vuông là a và b
2. Học sinh : - Thước thẳng, compa, thước đo góc, bảng nhóm, thước ê ke
- Các hình vuông, tam giác vuông bằng bìa cứng
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định lớp : 1’ kiểm tra sĩ số lớp
2. Kiểm tra bài : 5’
HS1 : - Định nghĩa tam giác vuông. (trả lời : là tam giác có 1 góc vuông)
- Vẽ 1 tam giác vuông có các cạnh góc vuông
là 3cm và 4cm. đo độ dài cạnh huyền
Đáp án : Thực hành đo cạnh BC = 5cm
HS2 : - So sánh tổng bình phương 2 cạnh góc vuông với bình phương cạnh huyền
Đáp án : AB2 + AC2 = 32+ 42 = 9 + 16 = 25
BC2 = 52 = 25. Vậy AB2 + AC2 = BC2
3. Bài mới :
Hoạt Động Của Giáo viên -Học sinh
Nội dung
Bổ sung
HĐ 1 : Định lý Pytago 25’:
GV thực hiện ?2
GV đưa bảng phụ có dán sẵn hai tấm bìa màu hình vuông có cạnh bằng (a+b)
GV yêu cầu HS xem tr 129 SGK, hình 121 và hình 122. Sau đó mời 4 HS lên bảng
- Hai HS thực hiện như hình 121
- Hai HS thực hiện như hình 122
a) Tính DT hình vuồng có cạnh c Hình.121
b) Tính DT 2 hình vuông có cạnh là a và b
Hỏi : Có nhận xét gì về DT phần bìa không bị che lấp ở hai hình ? Giải thích
DT hình vuông là c2
DT 2 Hình vuông là : a2 + b2
HS : DT phần bìa không bị che lấp ở hai hình bằng nhau
Hỏi : Từ đó rút ra nhận xét về quan hệ giữa c2 và a2 + b2
HS Rút ra nhận xét : c2 = a2 + b2
Hỏi : Hệ thức : c2 = a2 + b2 nói lên điều gì ?
HS nêu định lý Pytago tr 130 SGK
GV yêu cầu vài HS đọc lại định lý Pytago
GV yêu cầu HS đọc phần lưu ý SGK
GV yêu cầu HS làm ?3
(Đề bài và hình vẽ trên bảng phụ)
HS đọc đề bài và quan sát hình 124 - 125 tr 130 SGK
GV gọi 1HS trình bày miệng
Một học sinh trình bày miệng. GV ghi bảng
HĐ 2 : Định lý Pytago đảo5’:
GV yêu cầu HS làm ?4
Vẽ D ABC có AB = 3cm ; AC = 4cm ; BC = 5cm
Hãy dùng thước đo góc xác định số đo góc BÂC
HS : Toàn lớp vẽ hình vào vở. Một HS thực hiện trên bảng
BÂC = 900
GV : DABC có
AB2 + AC2 = BC2
(Vì 32 + 42 = 52 = 25)
Bằng đo đạc ta thấy DABC là D vuông
Người ta chứng minh được định lý Pytago đảo
GV yêu cầu HS nhắc lại định lý Pytago đảo
HS : Nhắc lại định lý Pytago đảo
HĐ 3 :Củng cố, Luyện tập 8’:
- GV yêu cầu HS Phát biểu định lý Pytago và định lý Pytago đảo
- So sánh hai định lý trên
HS : GT của định lý này là KL của định lý kia, KL của định lý này là GT của định lý kia
Cho HS làm bài tập 53 tr 131 SGK tập 1
(Đề bài trên bảng phụ)
GV yêu cầu HS hoạt động theo nhóm
1 Định lý Pyta go :
Hình 121
Hình 122
Trong một tam giác vuông bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
DABC vuông tại A
Þ BC2 = AB2 + AC2
* Lưu ý :
Để cho gọn, ta gọi bình phương độ dài của một đoạn thẳng là bình phương của đoạn thẳng đó
Bài ? 3 :
a) Dvuông ABC có
AB2 + BC2 = AC2 (đ/l Pytago)
Þ AB2 = AC2 - BC2 = 102-82
AB2 = 36 = 62
AB = 6 Þ x = 6
b) Tương tự EF2 = 12 + 12
EF = Þ x =
2. Định lý Pytago đảo :
Nếu một D có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì đó là D vuông.
A
B
C
DABC có
BC2 = AB2 + AC2
Þ BÂC = 900
bài 53 tr 131 SGK tập 1
Bảng nhóm
a) x2 = 122 + 52= 169
Þ x = 13
b) x2 = 12 + 22 Þ x =
c) x2 = 292 - 212 Þ x = 20
d) x2 = ()2 +32 Þ x = 4
5: Dặn dò :
GV: làm bài tập 54-55 trang 131 SGK
Đọc phần đọc thêm nhà toán học pitago ở đầu chương II
IV/Rút kinh nghiệm :………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………………………………………
Ngày soạn:14/1/2011
Ngày dạy:15/1/2011
Tuần 21-tiết 36 LUYỆN TẬP 1
I. MỤC TIÊU BÀI HỌC :
- Củng cố định lý Pytago và định lý đảo
- Vận dụng định lý Pytago để tính độ dài 1 cạnh của D vuông và vận dụng định lý
Pytago đảo để nhận biết một tam giác là tam giác vuông.
- Hiểu và vận dụng kiến thức đã học trong bài vào thực tế.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ :
1. Giáo viên :-Êke, compa sợi dây có thắt nút thành 12 đoạn bằng nhau
2. Học sinh : - Học bài và làm bài tập, thước thẳng, êke, compa, bảng nhóm
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định lớp : 1’ KTSS
2. Kiểm tra bài : 9’
1
HS1 : - Phát biểu định lý Pytago. Vẽ hình minh họa và viết hệ thức
- Chữa bài tập 55 (tr 131 SGK tập 1)
Đáp án : AB2 + AC2 = BC2 (đlý 1)
AC2 = 16 - 1 = 15 Þ AC = » 3,6m
HS2 : Phát biểu định lý Pytago đảo, vẽ hình viết hệ thức
- Chữa bài tập 56 (a,c) tr131 SGK tập 1 (bảng phụ)
Đáp án : a) 92 + 122 = 81 + 144 = 225 ; 152 = 225 Þ 92 + 122 = 152.
Vậy D này là D vuông theo định lý Pytago
b) 72 + 72 = 49 + 49 = 89. 102 = 100 Þ 72 + 72 ¹ 102
Vậy D này không phải là D vuông
3. Bài mới :
Hoạt động của Giáo viên - Học sinh
Nội dung
Bổ sung
HĐ 1 : Luyện tập
Bài tập 57 tr 131 SGK
(GV treo bảng phụ)
Hỏi : góc nào của D ABC vuông ?
HS : quan sát bảng phụ và trả lời cách làm của bạn Tâm
HS Trả lời : = 900
Vì AC = 17 là cạnh lớn nhất
Bài 86 tr 108 SBT :
Tính đường chéo của một mặt bàn hình chữ nhật có chiều dài 10dm, chiều rộng 5dm.
GV gọi HS lên bảng vẽ hình
Bài 87 tr 108 SBT
GV treo bảng phụ
GV gọi 1HS đọc đề trên bảng phụ, ghi GT, KL
1 HS : đọc to đề trên bảng phụ và lên bảng ghi GT,KL
GV gọi HS lên bảng giải
Bài 88 tr 108 SBT :
GV treo bảng phụ ghi đề bài 88 tr 108 SBT
Hỏi : Nhắc lại định nghĩa D vuông cân
GV gợi ý : gọi độ dài của cạnh góc vuông của D cân là x (cm), độ dài cạnh huyền là a(cm)
Bài 58 tr 132 SGK
GV treo bảng phụ
GV cho HS hoạt động nhóm
Hỏi : Trong lúc anh Năm dựng tủ thẳng đứng, tủ có vướng vào trần nhà không ?
vuông thành 1 hình vuông
-
Bài tập 57 tr 131 SGK
Tâm sai. Ta phải so sánh bình phương của cạnh lớn nhất với tổng bình phương 2 cạnh còn lại :
82 + 52 = 64 + 25 = 289 = 172
Þ DABC là D vuông
Bài 86 tr 108 SBT :
Dvuông ABD có :
BD2 = AB2+AD2 (Pytago)
BD2 = 52 + 102 = 125
Þ BD2 = » 11,2(dm)
AC ü BD tại 0
0A = 0C,
GT 0B = 0D,
AC= 12cm
BD = 16cm
KL tính :AB, BC,
CD,DA
Bài 87 tr 108 SBT
DA0B có AB2 = A02+ 0B2(pytago)
A0 = 0C = =6cm
0B = 0D = = 8cm
Þ AB2 = 62 + 82 = 100 Þ
AB = 10(cm)
Bài 88 tr 108 SBT :
Giải
x2 + x2 = a2 hay = 2x2 = a2
a) 2x2 = 22 Þ x2 = 2
Þ x = (cm)
b) 2x2 = ()2
2x2 = 2 Þ x2 = 1Þx =1(cm)
Bài 58 tr 132 SGK
Gọi đường chéo của tủ là d.
Ta có : d2 = 202 + 42 (pytago)
d2 = 400 + 16 = 416
Þ d = @ 20,4 (dm)
Chiều cao của trần nhà là 21dm. Vậy khi anh Năm dựng tủ, tủ không bị vướng trần nhà
5. Hướng dẫn học ở nhà :
- Ôn tập định lý Pytago thuận đảo
- Đọc có thể em chưa biết ghép 2 hình vuông thành 1 hình vuông tr 134 SGK theo hướng dẫn của SGK, hãy thực hiện cắt ghép từ hai hình
Bài tập về nhà : 59 ; 60 ; 61 tr 133 SGK ; 89 tr 108 SBT
IV/Rút kinh nghiệm
…………………………………………………………………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………………………………………………………………
Ngày soạn:18/1/2011
Ngày dạy:22/1/2011
Tuần 22-tiết 37Ngày soạn : / / 201
LUYỆN TẬP 2
I. MỤC TIÊU BÀI HỌC :
Củng cố thêm kiến thức về định lí py-ta-go và định lí đảo
Rèn luyện kĩ năng vận dụng được định lí vào giải bài tập và ứng dụng tính toán thực tế
II/Chuẩn bị :
GV:Giáo án, SGK, êke, phấn màu, máy tính
HS:SGK, thước đo độ, êke, máy tính
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định lớp : 1’ KTSS
2. Kiểm tra bài : 9’
HS1 : - Tính độ dài các cạnh góc vuông của tam giác vuông cân, biết độ dài cạnh huyền bằng 2cm.
Đáp án: gọi độ dài cạnh góc vuông bằng a.
Ta có:a2+ a2= 22 nên 2 a2= 4
Do đó a2=2 vậy a=
HS2: tính cạnh góc vuông của một tam giác vuông biết cạnh huyền bằng 13cm, cạnh góc vuông kia bằng 12.
A
C
B
Đáp án: D ABC vuông tại A, theo Đlý pi ta go
AB2=BC2-AC2=132-122=169-144=25=52
Vậy AB=5cm
3. Bài mới :
Giáo viên - Học sinh
Nội dung
Bổ Sung
HĐ 1 : Luyện tập
Bài tập 59 tr 133 SGK
GV:Treo bảng phụ bài tập 59/133 SGK
Gọi HS đọc BT 59
GV: là tam giác gì ?
HS:Đọc BT 59
HS: là tam giác vuông, vuông tại D
GV:
HS:
GV:
HS:AC = 60
Bài tập 60 tr 133 SGK
GV; treo bảng phụ bài 60/113 SGK
Yêu cầu học sinh đọc đề bài
GV:Hướng dẩn học sinh vẽ hình
HS:
GV:Để tính AC ta xét tam giác vuông nào ?
HS:Ta xétvuông HAC
GV:AC là cạnh gì của vuông HAC
HS:AC là cạnh huyền của vuông HAC
GV:Vậy AC = ?
HS:
GV:Để tính BC ta cần tính cạnh nào ?
HS:Ta cần tính cạnh BH
GV:Để tính BH ta xét tam giác vuông nào ?
HS:Ta xét tam giác vuông HAB
GV:BH được tính như thế nào ?
HS:
GV:Vậy BC = ?
HS:BC = BH + HC = 5 + 16 = 21
Bài tập 61 tr 133 SGK
GV:Treo bảng phụ bài tập 61/133 SGK
Gọi HS đọc BT 59
GV:Để tính độ dài BC ta xét tam giác vuông nào ?
HS:Ta xét tam giác vuông IBC
GV:
GV:Để tính độ dài AC ta xét tam giác vuông nào ?
HS:Ta xét tam giác vuông KAC
GV:
HS:
GV:Tính độ dài AB tương tự như tính độ dài AC và BC, Về nhà hãy tính độ dài AB
1. Luyện tập
Bài tập 59 tr 133 SGK
là tam giác vuông, vuông tại D
AC = 60
Bài tập 60 tr 133 SGK
xétvuông HAC ta có :
xét tam giác vuông HAB ta có
Vậy :
BC = BH + HC = 5 + 16 = 21
Bài tập 61 tr 133 SGK
Xét tam giác vuông IBC ta có :
Xét tam giác vuông KAC tacó :
5/Dặn dò :
-Về xem và làm lại các BT đã làm tại lớp.
-Làm BT 61 phần còn lại
VËy con cĩn chØ tíi ®ỵc A, B, D.
-Xem SGK trước các bài 8/134
Ngày soạn:14/1/2011
Ngày dạy:15/1/2011
Tuần 22-tiết 38 CÁC TRƯỜNG HỢP BẰNG NHAU
CỦA TAM GIÁC VUÔNG
I. MỤC TIÊU BÀI HỌC :
- HS nắm được các trường hợp bằng nhau của hai tam giác vuông. Biết vận dụng định lý Pytago để chứng minh trường hợp cạnh huyền cạnh góc vuông của 2 D vuông. Biết vận dụng các trường hợp bằng nhau của 2 D vuông để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau
- Tiếp tục rèn luyện khả năng phân tích tìm cách giải và trình bày bài toán chứng minh hình học.
- Hiểu và vận dụng kiến thức học được vào 1 số bài toán thực tế.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ :
1. Giáo viên :- Thước thẳng, êke, compa, bảng phụ ghi sẵn bài tập và câu hỏi
2. Học sinh : -Thước thẳng, êke, compa, bảng nhóm
- Thực hiện hướng dẫn tiết trước
III. TIẾN TRÌNH TIẾT DẠY :
1. Ổn định lớp : 1’ KTSS
2. Kiểm tra bài : 7’
HS1 : - Hãy nêu ra các trường hợp bằng nhau của D vuông được suy ra từ các
trường hợp bằng nhau của D ?
Trả lời : - Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai
cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng
nhau
- Hệ quả 1 và 2 tr 122 SGK
HS2 : - Trên mỗi hình em hãy bổ sung các điều kiện về cạnh góc để được các tam giác vuông bằng nhau theo từng trường hợp đã học
Thêm AB = AC để DABC =DA’B’C’
(c.c.c)
Thêm AC = A’C’;
để
DABC = DA’B’C’
(g.c.g)
Thêm và BC = B’C’ (ch-gn)
Trả lời :
Bài mới :
Giáo viên - Học sinh
Nội dung
Bổ sung
HĐ 1 : Các trường hợp bằng nhau đã biết của tam giác vuông12’ ;
Hỏi : 2 D vuông bằng nhau khi chúng có những yếu tố nào bằng nhau ?
HS : Phát biểu các trường hợp bằng nhau
GV treo bảng phụ bài ?1
H
Có các D vuông nào bằng nhau ? Vì sao ?
HS : trả lời
H143DAHB = DAHC (c.gc)
H144 DDKE = DDKF (g.c.g)
H145 D0MI = D0NI (ch-gn)
HĐ 2 : Trường hợp bằng nhau về cạnh huyền và cạnh góc vuông15’ :
GV yêu cầu HS đọc nội dung trong khung tr 135
Cả lớp vẽ hình và ghi : GT, KL của định lý
GV : gọi 1HS phát biểu định lý Pytago
HS : Phát biểu
Hỏi : Định lý Pytago có ứng dụng gì ?
HS Trả lời : Khi biết hai cạnh của D vuông, ta có thể tính được cạnh thứ ba của nó
Hỏi : Vậy nhờ định lý Pytago ta có thể tính cạnh AB theo cạnh BC, AC như thế nào ? Tương tự DE ?
HS : lên bảng áp dụng định lý Pytago tính AB và DE
GV : Như vậy nhờ định lý Pytago ta đã chỉ ra được DABC và DDEF có ba cặp cạnh bằng nhau
HS : Chứng minh 2 D bằng nhau (c.c.c)
GV gọi HS phát biểu lại trường hợp bằng nhau cạnh huyền, cạnh góc vuông của tam giác vuông
Cho HS làm bài ?2 SGK (treo bảng phụ)
DABC cân tại A.
AH ü BC
C/m rằng :
DAHB = DAHC
(bằng 2 cách)
GV gọi HS nêu GT, KL và 2HS lên bảng giải
HS : đọc đề và quan sát hình 147 và ghi GT,KL
DABC cân tại A.
GT AH ü BC
KL DAHB = DAHC
HĐ 3: củng Cố 9’
GV: yêu cầu HS nhắc lại các trường hợp bằng nhau của 2 tam giác vuông.
HS: trả lời
GV treo bảng phụ bài 63 SGK
gọi HS đọc đề bài.
HS: đọc đề bài.
Bài 63 tr 136 SGK
GV yêu cầu HS lên bảng ghi GT, KL
GT DABC (AB=AC)
AH ü BC
KL a) HB = HC
b) BÂH = CÂH
1HS lên bảng ghi GT, KL
GV cho HS suy nghĩ chứng minh trong 3 phút. Sau đó yêu cầu HS chứng minh miệng.
HS: đứng lên chứng minh bằng miệng
GV ghi bảng
1. Các trường hợp bằng nhau đã biết của tam giác vuông :
Hai tam giác vuông bằng nhau khi có :
1. Hai cạnh góc vuông bằng nhau
2. Một cạnh góc vuông và một góc nhọn kề cạnh ấy bằng nhau
3. Cạnh huyền và một góc nhọn bằng nhau
2. Trường hợp bằng nhau về cạnh huyền và cạnh góc vuông :
Định lý : Nếu cạnh huyền v
File đính kèm:
- HINH HOC 7 HKII TIEN.doc