1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SGK, SBT, SGV Toán 8.
3. Nội dung
37 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 7411 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu Giáo án tự chọn Toán 8 - Năm học 2013 – 2014, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuần 1 Ngày soạn: / /
Tiết 1 Ngày dạy: / /
CHỦ ĐỀ 1 : PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC
Tiết 1: ÔN TẬP PHÉP NHÂN ĐƠN THỨC
CỘNG TRỪ ĐƠN THỨC, ĐA THỨC
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SGK, SBT, SGV Toán 8.
3. Nội dung
a) Bài học: ÔN TẬP PHÉP NHÂN ĐƠN THỨC. CỘNG TRỪ ĐƠN THỨC, ĐA THỨC
b) Các hoạt động:
* Hoạt động 1: Ôn tập phép nhân đơn thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
20’
GV: Điền vào chổ trống
x1 =...; xm.xn = ...; = ...
GV: Để nhân hai đơn thức ta làm như thế nào?
GV: Tính 2x4.3xy
GV: Tính tích của các đơn thức sau:
a) x5y3 và 4xy2
b) x3yz và -2x2y4
HS: x1 = x; xm.xn = xm + n; = xm.n
HS: Để nhân hai đơn thức, ta nhân các hệ số với nhau và nhân các phần biến với nhau.
HS: 2x4.3xy = 6x5y
HS: Trình bày ở bảng
a) x5y3.4xy2 = x6y5
b) x3yz. (-2x2y4) =x5y5z
1. Ôn tập phép nhân đơn thức
x1 = x;
xm.xn = xm + n;
= xm.n
Ví dụ 1: 2x4.3xy = 6x5y
Ví dụ 2: T ính t ích của các đơn thức sau:
a) x5y3.4xy2 = x6y5
b) x3yz. (-2x2y4) =x5y5z
* Hoạt động 2: Ôn tập phép cộng, trừ đơn thức, đa thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
25’
GV: Để cộng, trừ đơn thức đồng dạng ta làm thế nào?
GV: Tính: 2x3 + 5x3 – 4x3
GV: Tính
a) 2x2 + 3x2 - x2
b) -6xy2 – 6 xy2
GV: Cho hai đa thức
M = x5 -2x4y + x2y2 - x + 1
N = -x5 + 3x4y + 3x3 - 2x + y
Tính M + N; M – N
HS: Để cộng, trừ đơn thức đồng dạng ta cộng, trừ các hệ số với nhau và giữ nguyên phần biến.
HS: 2x3 + 5x3 – 4x3 = 3x3
HS: a) 2x2 + 3x2 - x2 =x2
b) -6xy2 – 6 xy2 = -12xy2
HS: Trình bày ở bảng
M + N = (x5 -2x4y + x2y2 - x + 1) + (-x5 + 3x4y + 3x3 - 2x + y)
= x5 -2x4y + x2y2 - x + 1- x5 + 3x4y + 3x3 - 2x + y
= (x5- x5)+( -2x4y+ 3x4y) + (- x+2x) + x2y2+ 1+ y+ 3x3
= x4y + x + x2y2+ 1+ y+ 3x3
M - N = (x5 -2x4y + x2y2 - x + 1) - (-x5 + 3x4y + 3x3 - 2x + y)
= 2x5 -5x4y+ x2y2 +x - 3x3 –y + 1
2. Cộng, trừ đơn thức đồng dạng.
Ví dụ1:
2x3 + 5x3 – 4x3 = 3x3
Ví dụ 2:
a) 2x2 + 3x2 - x2 =x2
b) -6xy2 – 6 xy2 = -12xy2
3. Cộng, trừ đa thức
M + N = (x5 -2x4y + x2y2 - x + 1) + (-x5 + 3x4y + 3x3 - 2x + y)
= x5 -2x4y + x2y2 - x + 1- x5 + 3x4y + 3x3 - 2x + y
= (x5- x5)+( -2x4y+ 3x4y) + (- x - 2x) + x2y2+ 1+ y+ 3x3
= x4y - 3x + x2y2+ 1+ y+ 3x3
M - N = (x5 -2x4y + x2y2 - x + 1) - (-x5 + 3x4y + 3x3 - 2x + y)
= 2x5 -5x4y+ x2y2 +x - 3x3 –y + 1
c) Tóm tắt: x1 = x ; xm.xn = xm + n; = xm.n
Cách nhân đơn thức, cộng trừ đơn thức, đa thức.
d) Hướng dẫn các việc làm tiếp: GV cho HS về nhà làm các bài tập sau:
1. Tính 5xy2.(-x2y)
2. Tính 25x2y2 + (-x2y2)
3. Tính (x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
Tuần 1 Ngày soạn: / /
Tiết 2 Ngày dạy: / /
LUYỆN TẬP
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SGK, SBT, SGV Toán 8.
3. Nội dung
a) Tóm tắt:
Lí thuyết: Cách nhân đơn thức, cách cộng, trừ đơn thức, đa thức.
b) Các hoạt động:
* Hoạt động 1: Luyện tập phép nhân đơn thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
GV: Tính
a) 5xy2.(-x2y)
b) (-10xy2z).(-x2y)
c) (-xy2).(-x2y3)
d) (-x2y). xyz
HS: Lần lượt trình bày ở bảng:
a) 5xy2.(-x2y) = -x3y3
b) (-10xy2z).(-x2y) = 2x3y3z
c) (-xy2).(-x2y3) = x3y5
d) (-x2y). xyz = -x3y2z
Bài 1: Tính
a) 5xy2.(-x2y) = -x3y3
b) (-10xy2z).(-x2y) = 2x3y3z
c) (-xy2).(-x2y3) = x3y5
d) (-x2y). xyz = -x3y2z
* Hoạt động 2: Luyện tập phép cộng, trừ đơn thức, đa thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
GV: Tính
a) 25x2y2 + (-x2y2)
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
GV yêu cầu học sinh trình bày
GV: Điền các đơn thức thích hợp vào ô trống:
a) + 6xy2 = 5xy2
b) 3x5 - = -10x5
c) + - = x2y2
GV: Tính tổng của các đa thức:
P = x2y + xy2 – 5x2y2 + x3
và Q = 3xy2 – x2y + x2y2
M = x2 – 4xy – y2 và N = 2xy + 2y2
HS: a) 25x2y2 + (-x2y2) = x2y2
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
= x2 – 2xy + y2 – y2 - 2xy - x2 -1
= (x2- x2) + (– 2xy- 2xy)+( y2 – y2) -1
= – 4xy - 1
HS:
a) (-xy2) + 6xy2 = 5xy2
b) 3x5 - 13x5 = -10x5
c) 3x2y2 + 2x2y2 - 4x2y2= x2y2
HS: Hai HS trình bày ở bảng.
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 –
- x2y + x2y2
= 4xy2 – 4x2y2 + x3
M + N = x2 – 4xy – y2 + 2xy + 2y2
= x2 – 2xy + y2
Bài 2: Tính
a) 25x2y2 + (-x2y2) = x2y2
b) ( x2 – 2xy + y2) – (y2 + 2xy + x2 +1)
= x2 – 2xy + y2 – y2 - 2xy - x2 -1
= – 4xy – 1
Bài 3: Điền các đơn thức thích hợp vào ô trống:
a) (-xy2) + 6xy2 = 5xy2
b) 3x5 - 13x5 = -10x5
c) 3x2y2 + 2x2y2 - 4x2y2= x2y2
Bài 4: Tính tổng của các đa thức:
Giải:
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 –
- x2y + x2y2
= 4xy2 – 4x2y2 + x3
M + N = x2 – 4xy – y2 + 2xy + 2y2
= x2 – 2xy + y2
Hoạt động 3: Hướng dẫn vÒ nhµ:
Bài tập
1. Tính : a) (-2x3).x2 ; b) (-2x3).5x; c) (-2x3).
2. Tính: a) (6x3 – 5x2 + x) + ( -12x2 +10x – 2)
b) (x2 – xy + 2) – (xy + 2 –y2)
Tuần 2 Ngày soạn: / /
Tiết 3 Ngày dạy: / /
NHÂN ĐƠN THỨC VỚI ĐA THỨC
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức với đa thức, cách nhân đa thức với đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, 400 bài tập toán 8.
3. Nội dung
NHÂN ĐƠN THỨC VỚI ĐA THỨC. NHÂN ĐA THỨC
b) Các hoạt động:
* Hoạt động 1: Nhân đơn thức với đa thức
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
20’
GV: Để nhân đơn thức với đa thức ta làm như thế nào?
GV: Viết dạng tổng quát?
GV: Tính: 2x3(2xy + 6x5y)
GV: Làm tính nhân:
a) x5y3( 4xy2 + 3x + 1)
b) x3yz (-2x2y4 – 5xy)
HS: Để nhân đơn thức với đa thức ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích lại với nhau.
HS:A(B + C) = AB + AC.
HS: Trình bày ở bảng
2x3(2xy + 6x5y)
= 2x3.2xy + 2x3.6x5y
= 4x4y + 12x8y
HS: Trình bày ở bảng
a) x5y3( 4xy2 + 3x + 1)
= x6y5 – x6y3 x5y3
b) x3yz (-2x2y4 – 5xy)
= x5y5z – x4y2z
1. Nhân đơn thức với đa thức.
A(B + C) = AB + AC.
Ví dụ 1:
2x3(2xy + 6x5y)
= 2x3.2xy + 2x3.6x5y
= 4x4y + 12x8y
Ví dụ 2: Làm tính nhân:
a) x5y3( 4xy2 + 3x + 1)
= x6y5 – x6y3 x5y3
b) x3yz (-2x2y4 – 5xy)
= x5y5z – x4y2z
* Hoạt động 2: Nhân đa thức với đa thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
23’
GV: Để nhân đa thức với đa thức ta làm thế nào?
GV: Viết dạng tổng quát?
GV: Thực hiện phép tính:
(2x3 + 5y2)(4xy3 + 1)
GV: Tính (5x – 2y)(x2 – xy + 1)
GV: Thực hiện phép tính:
(x – 1)(x + 1)(x + 2)
HS: Để nhân đa thức với đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau.
HS:
(A + B)(C + D) = AC +AD +BC+BD
HS: (2x3 + 5y2)(4xy3 + 1)
= 2x3.4xy3 +2x3.1 + 5y2.4xy3 + 5y2.1
= 8x4y3 +2x3 + 20xy5 + 5y2
HS:
(5x – 2y)(x2 – xy + 1)
= 5x.x2 - 5x.xy + 5x.1 - 2y.x2 +2y.xy - 2y.1
= 5x3 - 5x2y + 5x - 2x2y +2xy2 - 2y
HS: Trình bày ở bảng:
(x – 1)(x + 1)(x + 2)
= (x2 + x – x -1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 – x -2
2. Nhân đa thức với đa thức.
(A + B)(C + D) = AC + AD + BC + BD
Ví dụ1: Thực hiện phép tính:
(2x3 + 5y2)(4xy3 + 1)
= 2x3.4xy3 +2x3.1 + 5y2.4xy3 + 5y2.1
= 8x4y3 +2x3 + 20xy5 + 5y2
Ví dụ 2: Thực hiện phép tính:
(5x – 2y)(x2 – xy + 1)
= 5x.x2 - 5x.xy + 5x.1 - 2y.x2 +2y.xy - 2y.1
= 5x3 - 5x2y + 5x - 2x2y +2xy2 - 2y
V í dụ 3: Thực hiện phép tính:
(x – 1)(x + 1)(x + 2)
= (x2 + x – x -1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 – x -2
c) Tóm tắt: (2’)
- Cách nhân đơn thức, cộng trừ đơn thức, đa thức.
- Quy tắc nhân đơn thức với đa thức : A(B + C) = AB + AC.
- Quy tắc nhân đa thức với đa thức : (A + B)(C + D) = AC +AD +BC+BD
Tuần 2 Ngày soạn: / /
Tiết 4 Ngày dạy: / /
LUYỆN TẬP
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc cách nhân đơn thức với đa thức, cách nhân đa thức với đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt.
- Có kĩ năng vận dụng các kiến thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, SGV Toán 8.
3. Nội dung
a) Tóm tắt:
Lí thuyết: Cách nhân đơn thức với đa thức, đa thức với đa thức.
b) Các hoạt động:
* Hoạt động 1: Luyện tập phép nhân đơn thức với đa thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
20’
GV Thực hiện phép tính:
a) 5xy2(-x2y + 2x -4)
b) (-6xy2)(2xy -x2y-1)
c) (-xy2)(10x + xy -x2y3)
HS: Lần lượt trình bày ở bảng:
a) 5xy2(-x2y + 2x -4)
= 5xy2.(-x2y ) + 5xy2. 2x - 5xy2. 4
=-x3y3 + 10x2y2 - 20xy2
b) (-6xy2)(2xy -x2y-1)
= -12x2y3 + x3y3 + 6xy2
c) (-xy2)(10x + xy -x2y3)
= -4x2y2 -x2y3 + x3y5
Bài 1: Tính
a) 5xy2(-x2y + 2x -4)
= 5xy2.(-x2y ) + 5xy2. 2x - 5xy2. 4
=-x3y3 + 10x2y2 - 20xy2
b) (-6xy2)(2xy -x2y-1)
= -12x2y3 + x3y3 + 6xy2
c) (-xy2)(10x + xy -x2y3)
= -4x2y2 -x2y3 + x3y5
* Hoạt động 2: Luyện tập phép nhân đa thức với đa thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
20’
GV: Thực hiện phép tính:
a) (x2 – 2xy + y2)(y2 + 2xy + x2 +1)
b) (x – 7)(x + 5)(x – 5)
Yêu cầu HS trình bày ở bảng các phép tính trên
GV: Chứng minh:
( x – 1)(x2 + x + 1) = x3 – 1
(x3 + x2y + xy2 + y3)(x – y) = x4 – y4
GV: Để chứng minh các đẳng thức trên ta làm như thế nào?
GV: Yêu cầu hai HS lên bảng chứng minh các đẳng thức trên
HS:
a) (x2 – 2xy + y2)(y2 + 2xy + x2 +1)
= x2y2 + 2x3y + x4 + x2 - 4x2y2 - 2x3y –
- 2xy + y4 + 2xy3 + x2y2 + y2
= x4 - 2x2y2 +2xy3 + x2 + y2 - 2xy + y4
b) (x – 7)(x + 5)(x – 5)
= (x2 -2x -35)(x – 5)
= x3 -5x2 -2x2 + 10x -35x + 175
= x3 -7x2 -25x + 175
HS: Ta biến đổi vế trái bằng cách thực hiện phép nhân đa thức với đa thức.
HS1: Trình bày ở bảng.
(x – 1)(x2 + x + 1) = x3 + x2 + x - x2 - x – 1= x3 – 1
HS2:(x3 + x2y + xy2 + y3)(x – y)
= x4 - x3y + x3y - x2y2 + x2y2- xy3 + xy3 - y4
= x4 – y4
Bài 2: Thực hiện phép tính:
a) (x2 – 2xy + y2)(y2 + 2xy + x2 +1)
= x2y2 + 2x3y + x4 + x2 - 4x2y2 - 2x3y –
- 2xy + y4 + 2xy3 + x2y2 + y2
= x4 - 2x2y2 +2xy3 + x2 + y2 - 2xy + y4
b) (x – 7)(x + 5)(x – 5)
= (x2 -2x -35)(x – 5)
= x3 -5x2 -2x2 + 10x -35x + 175
= x3 -7x2 -25x + 175
Bài 3: Chứng minh:
Biến đổi vế trái ta có:
(x – 1)(x2 + x + 1) = x3 + x2 + x - x2 - x – 1 x3 – 1
Biến đổi vế trái ta có:
(x3 + x2y + xy2 + y3)(x – y)
= x4 - x3y + x3y - x2y2 + x2y2- xy3 + xy3 - y4
= x4 – y4
Hoạt động 3: Hướng dẫn vÒ nhµ:
- Nắm chắc cách nhân đơn thức với đa thức, cách nhân đa thức với đa thức
- Bài tập. Tính :
a) (-2x3 + 2x - 5)x2 ;
b) (-2x3)(5x – 2y2 – 1);
c) (-2x3).
Tuần 3 Ngày soạn: / /
Tiết 5 Ngày dạy: / /
NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc những hằng đẳng thức đáng nhớ.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt dựa vào các hằng đẳng thức đã học.
- Có kĩ năng vận dụng các hằng đẳng thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, 400 bài tập toán 8.
3. Nội dung
a) Bài học: NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
b) Các hoạt động:
* Hoạt động 1: Những đẳng thức đáng nhớ
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
40’
GV: Viết dạng tổng quát của hằng đẳng thức bình phương của một tổng?
GV: Tính (2x + 3y)2
GV: Viết dạng tổng quát của hằng đẳng thức bình phương của một hiệu ?
GV: Tính (2x - y)2
GV: Viết dạng tổng quát của hằng đẳng thức hiệu hai bình phương ?
GV: Tính (2x - 5y)(2x + 5y)
Có cần thực hiện phép nhân đa thức với đa thức ở phép tính này không?
GV: Yêu cầu HS trình bày ở bảng
GV: Viết dạng tổng quát của hằng đẳng thức lập phương của một tổng?
GV: Tính (x + 3y)3
GV: Nhận xét
GV: Viết dạng tổng quát của hằng đẳng thức lập phương của một hiệu
GV: Tính (x - 2y)3
GV: Viết dạng tổng quát của hằng đẳng thức tổng hai lập phương ?GV: Tính (x + 3)(x2 - 3x + 9)
GV: Viết dạng tổng quát của hằng đẳng thức hiệu hai lập phương ?GV: Tính (2x - y)(4x2 + 2xy + y2)
HS: (A + B)2 = A2 + 2AB + B2
HS: Trình bày ở bảng
(2x + 3y)2 = (2x)2 + 2.2x.3y + (3y)2 = 4x2 + 12xy + 9y2
HS: (A - B)2 = A2 - 2AB + B2
HS: Trình bày ở bảng
(2x - 3y)2 = (2x)2 - 2.2x.3y + y2 = 4x2 - 12xy + 9y2
HS: (A + B)(A – B) = A2 – B2
HS: Ta áp dụng hằng đẳng thức hiệu của hai bình phương để thực hiện phép tính
HS: (2x - 5y)(2x + 5y)
= (2x)2 – (5y)2 = 4x2 – 25y2
HS: (A + B)3 = A3 + 3A2B + 3AB2 + B3
HS: (x + 3y)2 = x3 + 3x2.3y + 3x(3y)2 + y3
= x3 + 9x2y + 27xy2 + y3
HS: (A - B)3 = A3 - 3A2B + 3AB2 - B3
HS: Trình bày ở bảng
(x - 2y)2 = x3 - 3x2y + 3x(2y)2 - y3
= x3 - 3x2y + 12xy2 - y3
HS: A3 + B3 = (A + B)(A2 – AB + B2)
HS: (x + 3)(x2 - 3x + 9)
= x3 + 33 = x3 + 27
HS: A3 - B3 = (A - B)(A2 + AB + B2)
HS: Trình bày ở bảng
(2x - y)(4x2 + 2xy + y2)
= (2x)3 - y3 = 8x3 - y3
1. Bình phương của một tổng.
(A + B)2 = A2 + 2AB + B2
Ví dụ:
(2x + 3y)2 = (2x)2 + .2x.3y + (3y)2 = 4x2 + 12xy + 9y2
2. Bình phương của một hiệu
(A - B)2 = A2 - 2AB + B2
Ví dụ:
(2x - 3y)2 = (2x)2 - 2.2x.3y + (3y)2 = 4x2 - 12xy + 9y2
3. Hiệu hai bình phương
(A + B)(A – B) = A2 – B2
(2x - 5y)(2x + 5y)
= (2x)2 – (5y)2 = 4x2 – 25y2
4. Lập phương của một tổng.
(A + B)3 = A3 + 3A2B + 3AB2 + B3
Ví dụ:
(x + 3y)2 = x3 + 3x2.3y + 3x(3y)2 + y3
= x3 + 9x2y + 27xy2 + y3
5. Lập phương của một hiệu.
(A - B)3 = A3 - 3A2B + 3AB2 - B3
Ví dụ:
(x - 2y)2 = x3 - 3x2y + 3x(2y)2 - y3
= x3 - 3x2y + 12xy2 - y3
6. Tổng hai lập phương
A3 + B3 = (A + B)(A2 – AB + B2)
Ví dụ: (x + 3)(x2 - 3x + 9)
= x3 + 33 = x3 + 27
7. Hiệu hai lập phương
A3 - B3 = (A - B)(A2 + AB + B2)
Ví dụ:
(2x - y)(4x2 + 2xy + y2)
= (2x)3 - y3 = 8x3 - y3
Hoạt đông2: Hướng dẫn các việc làm tiếp:(2’)
GV cho HS về nhà làm các bài tập sau:
Tính: a) (3 + xy)2; b) (4y – 3x)2 ;
(3 – x2)( 3 + x2);
d) (2x + y)( 4x2 – 2xy + y2);
e) (x - 3y)(x2 -3xy + 9y2)
Tuần 3 Ngày soạn: / /
Tiết 6 Ngày dạy: / /
LUYỆN TẬP
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc những hằng đẳng thức đáng nhớ.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt dựa vào các hằng đẳng thức đã học.
- Có kĩ năng vận dụng các hằng đẳng thức trên vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, SGV Toán 8.
3. Nội dung
a) Tóm tắt: (5’)
Lí thuyết: A3 - B3 = (A - B)(A2 + AB + B2); A3 + B3 = (A + B)(A2 – AB + B2)
(A - B)3 = A3 - 3A2B + 3AB2 - B3; (A + B)3 = A3 + 3A2B + 3AB2 + B3
(A + B)(A – B) = A2 – B2;(A - B)2 = A2 - 2AB + B2;
(A + B)2 = A2 + 2AB + B2
b) Các hoạt động:
* Hoạt động 1: Rút gọn biểu thức. (20’)
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
20’
GV: Rút gọn biểu thức:
(x + y)2 + (x - y)2
2(x – y)(x + y) + (x + y)2 + (x - y)2
c)(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
GV: Để rút gọn các biểu thức trên ta làm như thế nào?
GV: Yêu cầu HS lên bảng trình bày.
HS: Ta vận dụng các hằng đẳng thức để rút gọn.
HS: Trình bày
(x + y)2 + (x - y)2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2
2(x – y)(x + y) + (x + y)2 + (x - y)2
= (x + y)2 + 2(x – y)(x + y) + (x - y)2
= (x + y + x - y)2
= (2x)2 = 4x2
c)(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
= [(x – y + z) + (y – z)]2
= [x – y + z + y – z]2 = =x2
Bài 1: Rút gọn biểu thức:
(x + y)2 + (x - y)2
2(x – y)(x + y) + (x + y)2 + (x - y)2
c)(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
Giải:
a) (x + y)2 + (x - y)2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2
b) 2(x – y)(x + y) + (x + y)2 + (x - y)2
= (x + y)2 + 2(x – y)(x + y) + (x - y)2
= (x + y + x - y)2
= (2x)2 = 4x2
c)(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2
= [(x – y + z) + (y – z)]2
= [x – y + z + y – z]2 =x2
* Hoạt động 2: Chứng minh đẳng thức.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
15’
GV: Chứng minh rằng:
(a + b)(a2 – ab + b2) + (a - b)(a2 + ab + b2) = 2a3
a3 + b3 = (a + b)[(a – b)2 + ab]
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2
GV: Để chứng minh các đẳng thức trên ta làm như thế nào?
GV: Yêu cầu HS lên bảng trình bày các bài trên.
HS: Ta biến đổi một vế để đưa về vế kia.
HS: Lần lượt trình bày ở bảng
(a + b)(a2 – ab + b2) + (a - b)(a2 + ab + b2) = 2a3
Biến đổi vế trái:
(a + b)(a2 – ab + b2) + (a - b)(a2 + ab + b2)
= a3 + b3 + a3 - b3
= 2a3 (đpcm)
c) (a2 + b2)(c2 + d2)=(ac + bd)2 +(ad – bc)2
Biến đổi vế phải
(ac + bd)2 + (ad – bc)2
= a2c2 + 2acbd + b2d2 + a2d2 - 2acbd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= (a2c2 + a2d2 ) + ( b2d2 + b2c2)
= a2(c2 + d2) + b2(d2 + c2)= (c2 + d2)(a2+ b2) (đpcm)
Bài 2: Chứng minh rằng:
(a + b)(a2 – ab + b2) + (a - b)(a2 + ab + b2) = 2a3
Biến đổi vế trái:
(a + b)(a2 – ab + b2) + (a - b)(a2 + ab + b2)
= a3 + b3 + a3 - b3
= 2a3 (đpcm)
a3 + b3 = (a + b)[(a – b)2 + ab]
Biến đổi vế phải:
(a + b)[(a – b)2 + ab]
= (a + b)[a2 -2ab + b2 + ab]
= (a + b)(a2 -ab + b2)
= a3 + b3 (đpcm)
(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2
Biến đổi vế phải
(ac + bd)2 + (ad – bc)2
= a2c2 + 2acbd + b2d2 + a2d2 - 2acbd + b2c2
= a2c2 + b2d2 + a2d2 + b2c2
= (a2c2 + a2d2 ) + ( b2d2 + b2c2)
= a2(c2 + d2) + b2(d2 + c2)
= (c2 + d2)(a2+ b2) (đpcm)
Hoạt động 3: Hướng dẫn vÒ nhµ:
-Nắm chắc những hằng đẳng thức đáng nhớ. Ngày…….tháng…..năm 2013
-Bài tập: Viết các biểu thức sau dưới dạng Kí giáo án đầu tuần
binh phương của một tổng:
x2 + 6x + 9
x2 + x +
2xy2 + x2y4 + 1
Tuần 4 Ngày soạn: / /
Tiết 7 Ngày dạy: / /
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc các phương pháp phân tích đa thức thành nhân tử.
- Hiểu và thực hiện được các phương pháp trên một cách linh hoạt.
- Có kĩ năng vận dụng phối hợp các phương pháp vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, 400 bài tập toán 8.
3. Nội dung
a) Bài học: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
b) Các hoạt động:
* Hoạt động 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
10’
GV: Thế nào là phân tích đa thức thành nhân tử?
GV: Phân tích đa thức thành nhân tử:
5x – 20y
5x(x – 1) – 3x(x – 1)
x(x + y) -5x – 5y
HS: Phân tích đa thức thành nhân tử là biến đổi đa thức đó thành một tích của những đa thức.
5x – 20y
= 5(x – 4)
5x(x – 1) – 3x(x – 1)
= x(x – 1)(5 – 3)
= 2 x(x – 1)
x(x + y) -5x – 5y
= x(x + y) – (5x + 5y)
= x(x + y) – 5(x + y)
= (x + y) (x – 5)
1.Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Ví dụ: Phân tích đa thức thành nhân tử:
5x – 20y
= 5(x – 4)
5x(x – 1) – 3x(x – 1)
= x(x – 1)(5 – 3)
= 2 x(x – 1)
x(x + y) -5x – 5y
= x(x + y) – (5x + 5y)
= x(x + y) – 5(x + y)
= (x + y) (x – 5)
* Hoạt động 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức .
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
10’
GV: Phân tích đa thức thành nhân tử:
x2 – 9
4x2 – 25
x6 - y6
HS: Trình bày ở bảng.
x2 – 9 = x2 – 32 = (x – 3)(x + 3)
4x2 – 25 = (2x)2 - 52
= (2x - 5)( 2x + 5)
x6 - y6
= (x3)2 -(y3)2
= (x3 - y3)( x3 + y3)
= (x + y)(x - y)(x2 -xy + y2)(x2+ xy+ y2)
2.Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Ví dụ: Phân tích đa thức thành nhân tử:
x2 – 9 = x2 – 32 = (x – 3)(x + 3)
4x2 – 25 = (2x)2 - 52
= (2x - 5)( 2x + 5)
x6 - y6
= (x3)2 -(y3)2
= (x3 - y3)( x3 + y3)
= (x + y)(x - y)(x2 -xy + y2)(x2+ xy+ y2)
*Hoạt động 3:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
10’
GV: Phân tích đa thức thành nhân tử:
x2 – x – y2 – y
x2 – 2xy + y2 – z2
HS: Trình bày ở bảng.
x2 – x – y2 – y
= (x2 – y2) – (x + y)
= (x – y)(x + y) - (x + y)
=(x + y)(x – y - 1)
b) x2 – 2xy + y2 – z2
= (x2 – 2xy + y2 )– z2
= (x – y)2 – z2
= (x – y + z)(x – y - z)
3.Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
Ví dụ: Phân tích đa thức thành nhân tử:
x2 – x – y2 – y
= (x2 – y2) – (x + y)
= (x – y)(x + y) - (x + y)
=(x + y)(x – y - 1)
b) x2 – 2xy + y2 – z2
= (x2 – 2xy + y2 )– z2
= (x – y)2 – z2
= (x – y + z)(x – y - z)
*Hoạt động 4:Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
15’
GV: Phân tích đa thức thành nhân tử:
a) x4 + 2x3 +x2
b) 5x2 + 5xy – x - y
HS: Trình bày ở bảng.
a) x4 + 2x3 +x2
= x2(x2 + 2x + 1) = x2(x + 1)2
5x2 + 5xy – x – y
= (5x2 + 5xy) – (x +y)
= 5x(x +y) - (x +y)
= (x +y)(5x – 1)
4.Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Ví dụ: Phân tích đa thức thành nhân tử:
a) x4 + 2x3 +x2
= x2(x2 + 2x + 1) = x2(x + 1)2
5x2 + 5xy – x – y
= (5x2 + 5xy) – (x +y)
= 5x(x +y) - (x +y)
= (x +y)(5x – 1)
c) Tóm tắt: (2’) Các phương pháp phân tích đa thức thành nhân tử
d) Hướng dẫn các việc làm tiếp:(2’)
GV cho HS về nhà làm các bài tập sau:
Phân tích các đa thức sau thành nhân tử:
9x2 + 6xy + y2 ; b) 5x – 5y + ax - ay
c) (x + y)2 – (x – y)2 ; d) xy(x + y) + yz(y +z) +xz(x +z) + 2xyz
Tuần 4 Ngày soạn: / /
Tiết 8 Ngày dạy: / /
LUYỆN TẬP
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc các phương pháp phân tích đa thức thành nhân tử.
- Hiểu và thực hiện được các phương pháp trên một cách linh hoạt.
- Có kĩ năng vận dụng phối hợp các phương pháp vào bài toán tổng hợp.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, SGV Toán 8.
3. Nội dung
a) Tóm tắt: (2’)
Lí thuyết: Các phương pháp phân tích đa thức thành nhân tử
b) Các hoạt động:
* Hoạt động 1: Phân tích thành nhân tử.
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
23’
GV: Phân tích các đa thức sau thành nhân tử:
9x2 + 6xy + y2 ;
5x – 5y + ax – ay
(x + y)2 – (x – y)2 ;
d) 5x2 – 10xy + 5y2 -20z2
HS:
a) 9x2 + 6xy + y2
= (3x)2 + 2.3xy + y2
= (3x + y)2
b) 5x – 5y + ax – ay
= (5x – 5y) + (ax – ay)
= 5(x – y) + a(x – y)
=(x – y)(5 + a)
c) (x + y)2 – (x – y)2
= (x + y +x – y)( x + y – x + y)
= 2x.2y = 4xy
d) 5x2 – 10xy + 5y2 -20z2
= 5(x2 – 2xy +y2 - 4z2)
= 5[(x2 – 2xy +y2) – (2z)2]
= 5[(x – y)2 – (2z)2]
=5(x – y +2z)(x – y – 2z)
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) 9x2 + 6xy + y2
= (3x)2 + 2.3xy + y2
= (3x + y)2
b) 5x – 5y + ax – ay
= (5x – 5y) + (ax – ay)
= 5(x – y) + a(x – y)
=(x – y)(5 + a)
c) (x + y)2 – (x – y)2
= (x + y +x – y)( x + y – x + y)
= 2x.2y = 4xy
d) 5x2 – 10xy + 5y2 -20z2
= 5(x2 – 2xy +y2 - 4z2)
= 5[(x2 – 2xy +y2) – (2z)2]
= 5[(x – y)2 – (2z)2]
=5(x – y +2z)(x – y – 2z)
* Hoạt động 2: Tính nhanh. (15’)
TG
Hoạt động của GV
Hoạt động của HS
NỘI DUNG
GV: Tính nhanh:
a) 252 - 152
b) 872 + 732 -272 -132
HS:
GV: Vận dụng các kiến thức nào để tính các bài toán trên?
HS: Vận dụng các phương pháp phân tích đa thức thành nhân tử để tính nhanh các bài trên.
GV: Yêu cầu HS trình bày ở bảng
HS:
GV: Tính nhanh giá trị của biểu thức sau tại x = 6 ; y = -4; z = 45
x2 - 2xy - 4z2 + y2
HS:
GV: Nêu cách làm bài toán trên?
HS: Phân tích đa thức trên thành nhân tử sau đó thay các giá trị của x, y, z vòa kết quả đã được phân tích.
GV: Cho Hs trình bày ở bảng
Bài 2: Tính nhanh:
a) 252 - 152
b) 872 + 732 -272 -132
Giải:
a) 252 - 152
= (25 + 15)(25 – 15)
= 10.40 = 400
b) 872 + 732 -272 -132
= (872 -132) + (732 -272)
= (87 -13)( 87 + 13) + (73 -27)(73 +27)
=100.74 + 100.36
=100(74 + 36)
= 100.100 = 10000
Bài 3: Tính nhanh giá trị của biểu thức sau tại x = 6 ; y = -4; z = 45
x2 - 2xy - 4z2 + y2
Giải:
x2 - 2xy - 4z2 + y2
= x2 - 2xy + y2 - 4z2
= ( x2 - 2xy + y2) - 4z2
= (x –y)2 – (2z)2
= (x –y – 2z)( x –y + 2z)
Thay x = 6 ; y = -4; z = 45 ta có:
(6 + 4 – 90)(6 + 4 +90)
= -80.100= -8000
c) Tóm tắt: (2’) Các phương pháp phân tích đa thức thành nhân tử
d) Hướng dẫn các việc làm tiếp: (3’)
Bài tập Phân tích các đa thức sau thành nhân tử:
a) 4x2 + 20x + 25;
b) x2 + x +
c) a3 – a2 – ay +xy
d) (3x + 1)2 – (x + 1)2
e) x2 +5x - 6
Tuần 5 Ngày soạn: 09/2013
Tiết 9 Ngày dạy: /09/2013
CHIA ĐƠN THỨC. CHIA ĐA THỨC CHO ĐƠN THỨC
¾¾¾¾¾ cód ¾¾¾¾¾
1.Mục tiêu:
- Biết và nắm chắc cách chia đơn thức cho đơn thức, đa thức cho đa thức cho đa thức.
- Hiểu và thực hiện được các phép tính trên một cách linh hoạt .
- Có kĩ năng vận dụng các hằng đẳng thức vào phép chia đa thức cho đa thức.
2. Các tài liệu hổ trợ
- SGK, giáo án.
- SBT, 400 bài tập toán 8.
3. Nội dung
a) Bài học: CHIA ĐƠN THỨC. CHIA ĐA THỨC CHO ĐƠN THỨC
b) Các hoạt động:
* Hoạt động 1:
File đính kèm:
- tu chon toan 8 4 cot.doc