Hệ thống kiến thức cơ bản và một số dạng bài tập chủ yếu (phục vụ cho chương trình lớp 9 và ôn thi vào lớp 10)

I.MỤC TIÊU

II.NHỮNG NỘI DUNG KIẾN THỨC CƠ BẢN

A.Đại số:

I.Đa thức: Nhân, chia, hằng đẳng thức, phân tích đa thức thành nhân tử.

II.Phân thức đại số: ĐKXĐ, rút gọn, quy đồng, các phép tính.

III.Căn bậc hai: Khái niệm, hằng đẳng thức, ĐKXĐ, các phép biến đổi.

IV.Phương trình, bất phương trình bậc nhất một ẩn: Dạng, phương pháp giải.

V.Hàm số bậc nhất, bậc hai: Định nghĩa, tính chất, đồ thị, vị trí trên mặt phẳng tọa độ giữa các đồ thị.

VI.Hệ phương trình bậc nhất hai ẩn: Nghiệm, các phương pháp giải.

VII.Giải bài toán bằng cách lập hệ phương trình, phương trình.

VIII.Phương trình bậc hai: Dạng, công thức nghiệm, Định lý Viet, ứng dụng.

B.Hình học:

I.Định lí Pytago, hệ thức lượng trong tam giác vuông, tỉ số lượng giác của góc nhọn.

II.Định lý Talet, tính chất đường phân giác.

III.Tam giác bằng nhau, đồng dạng: Khái niệm, các trường hợp.

IV.Đường tròn: Khái niệm, sự xác định đường tròn, tính chất đối xứng, vị trí tương đối của đường thẳng với đường tròn (chú ý tiếp tuyến của đường tròn), đường tròn với đường tròn.

V.Góc và đường tròn: Đặc điểm, quan hệ với cung bị chắn, tính chất.

VI.Tứ giác nội tiếp: Khái niệm, tính chất, dấu hiệu.

VII.Độ dài và diện tích hình tròn.

VIII.Hình học không gian: Khái niệm, công thức tính diện tích xung quanh, diện tích toàn phần, thể tích.

 

doc37 trang | Chia sẻ: oanh_nt | Lượt xem: 1158 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Hệ thống kiến thức cơ bản và một số dạng bài tập chủ yếu (phục vụ cho chương trình lớp 9 và ôn thi vào lớp 10), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
HỆ THỐNG KIẾN THỨC CƠ BẢN VÀ MỘT SỐ DẠNG BÀI TẬP CHỦ YẾU (Phục vụ cho chương trình lớp 9 và ôn thi vào lớp 10) I.MỤC TIÊU II.NHỮNG NỘI DUNG KIẾN THỨC CƠ BẢN A.Đại số: I.Đa thức: Nhân, chia, hằng đẳng thức, phân tích đa thức thành nhân tử. II.Phân thức đại số: ĐKXĐ, rút gọn, quy đồng, các phép tính. III.Căn bậc hai: Khái niệm, hằng đẳng thức, ĐKXĐ, các phép biến đổi. IV.Phương trình, bất phương trình bậc nhất một ẩn: Dạng, phương pháp giải. V.Hàm số bậc nhất, bậc hai: Định nghĩa, tính chất, đồ thị, vị trí trên mặt phẳng tọa độ giữa các đồ thị. VI.Hệ phương trình bậc nhất hai ẩn: Nghiệm, các phương pháp giải. VII.Giải bài toán bằng cách lập hệ phương trình, phương trình. VIII.Phương trình bậc hai: Dạng, công thức nghiệm, Định lý Viet, ứng dụng. B.Hình học: I.Định lí Pytago, hệ thức lượng trong tam giác vuông, tỉ số lượng giác của góc nhọn. II.Định lý Talet, tính chất đường phân giác. III.Tam giác bằng nhau, đồng dạng: Khái niệm, các trường hợp. IV.Đường tròn: Khái niệm, sự xác định đường tròn, tính chất đối xứng, vị trí tương đối của đường thẳng với đường tròn (chú ý tiếp tuyến của đường tròn), đường tròn với đường tròn. V.Góc và đường tròn: Đặc điểm, quan hệ với cung bị chắn, tính chất. VI.Tứ giác nội tiếp: Khái niệm, tính chất, dấu hiệu. VII.Độ dài và diện tích hình tròn. VIII.Hình học không gian: Khái niệm, công thức tính diện tích xung quanh, diện tích toàn phần, thể tích. §1.ĐA THỨC A.KIẾN THỨC CƠ BẢN 1.Nhân đơn, đa thức 2.Cộng, trừ đơn, đa thức Thực chất của việc làm này là cộng, trừ đơn thức đồng dạng dựa vào quy tắc sau cùng tính chất giao hoán, kết hợp của phép cộng các đa thức. 3.Hằng đẳng thức đáng nhớ Mở rộng: 4.Phân tích đa thức thành nhân tử Phân tích đa thức thành nhân tử thực chất là viết đa thức đó thành tích của hai hay nhiều đa thức khác đơn giản hơn. Các phương pháp phân tích đa thức thành nhân tử gồm: -Đặt nhân tử chung. -Dùng hằng đẳng thức. -Nhóm nhiều hạng tử. -Tách một hạng tử thành nhiều hạng tử. -Thêm, bớt cùng một hạng tử. -Đặt ẩn phụ. Trong thực hành thông thường ta dùng kết hợp các phương pháp với nhau. Song nên đi theo thứ tự các phương pháp như trên để thuận lợi trong quá trình xử lý kết quả. B.MỘT SỐ VÍ DỤ Ví dụ 1.Thực hiện phép tính Giải Ví dụ 2.Tính giá trị của biểu thức với x = - 2; y = . với x = Giải -Thu gọn biểu thức. (đã làm ở ví dụ 1) -Thay số, tính: . Ví dụ 3.Chứng minh Giải a) Có VT = a2 + 2ab + b2 – 4ab = a2 – 2ab + b2 = (a – b)2 = VP.(đpcm) b) Có A = n2 + 5n – n2 + n + 6 = 6n + 6 = 6.(n + 1) do . (đpcm) c) Có B = (x2 + 2x + 1) + 1 = (x + 1)2 + 1. Do (x + 1)2 0 (x + 1)2 + 1 > 0 .(đpcm) Ví dụ 4.Phân tích các đa thức sau thành nhân tử a) x3 – 4x b) x2 – 5x + 4 c) x4 + 4. Giải a) x3 – 4x = x.(x2 – 4) = x.(x – 2).(x + 2). b) x2 – 5x + 4 = (x2 – 4x) – (x – 4) = x.(x – 4) – (x – 4) = (x – 4).(x – 1). c) x4 + 4 = (x2)2 +2x2.2 +22 – 4x2 = (x2 +2)2 – (2x)2 = (x2 +2 – 2x).(x2 +2 + 2x). C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Chứng minh . không phụ thuộc vào biến x. . 2.Tính giá trị của biểu thức A = 6(4x + 5) + 3(4 – 5x) với x = 1,5. B = 40y – 5(2y – 3) + 6(5 – 1,5y) với y = -1,5. 3.Tìm x a) 2x(3x + 1) + (4 – 2x).3x = 7. b) 5x(x – 3) – x + 3 = 0. 4.Chứng minh a) (1 – 2a)(5a2 + 2a + 1) = 1 – 10a3. b) (5x3 + 4x2y + 2xy2 + y3)(2x – 10y) = 10(x4 – y4). c) a3 + b3 + c3 -3abc = 0 a = b = c hoặc a + b + c = 0. (Nếu a, b, c là độ dài ba cạnh của tam giác thì tam giác đó là tam giác gì?) d) thì . 5.Cho x + y + z = 0 và xy + yz + zx = 0 Tính T = (x – 1)1991 + y1992 + (z + 1)1993. 6.Tìm max, min của các biểu thức sau A = x2 – 4x + 1. B = 2 + x – x2. C = x2 – 2x + y2 – 4y + 6. --------------------------------------------------------------------------------- §2.PHÂN THỨC A.KIẾN THỨC CƠ BẢN 1.Khái niệm Dạng trong đó A, B là các đa thức, B 0. 2.Điều kiện xác định Cách tìm: -Giải B = 0. -Kết luận: loại đi các giá trị tìm được của ẩn ở trên. 3.Rút gọn -Phân tích cả tử và mẫu thành nhân tử. -Chia cả tử và mẫu cho nhân tử chung. 4.Quy đồng mẫu các phân thức -Phân tích cả tử và mẫu thành nhân tử. -Lập tích = (BCNN của các hệ số).(các nhân tử với số mũ lớn nhất). -Tìm thừa số phụ = MTC : MR. -Nhân cả tử và mẫu của mỗi phân thức với thừa số phụ tương ứng của nó. 5.Các phép tính Chú ý: -Ở phần b, MTC có thể khác. -Cần rút gọn kết quả nếu có thể. B.MỘT SỐ VÍ DỤ Ví dụ 1.Tìm điều kiện xác định của các phân thức sau Giải a) Phân thức không xác định khi x – 1 = 0 x = 1. Vậy ĐKXĐ: x 1. b) Phân thức không xác định khi 4x2 – xy = 0 x(4x – y) = 0 x = 0 hoặc 4x – y = 0 x = 0 hoặc y = 4x. Vậy ĐKXĐ: . Ví dụ 2.Rút gọn các biểu thức sau Giải . . Ví dụ 3.Thực hiện phép tính Giải . C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Tìm điều kiện xác định của các phân thức sau 2.Các biểu thức sau có phụ thuộc vào giá trị của biến hay không? 3.Chứng minh . 4.Cho biểu thức a)Tìm ĐKXĐ của biểu thức A. b)Rút gọn A và tính giá trị với x = - 0,5; y = 3. c)Tìm điều kiện của x, y để A = 1. d)Tìm x, y để biểu thức A có giá trị âm. ------------------------------------------------------------------ §3.CĂN BẬC HAI A.KIẾN THỨC CƠ BẢN 1.Khái niệm x là căn bậc hai của số không âm a x2 = a. Kí hiệu: . 2.Điều kiện xác định của biểu thức Biểu thức xác định . 3.Hằng đẳng thức căn bậc hai 4.Các phép biến đổi căn thức +) +) +) +) +) +) +) với B.MỘT SỐ VÍ DỤ VD1.Thu gọn, tính giá trị các biểu thức Giải VD2.Cho biểu thức a)Rút gọn y. Tìm x để y = 2. b)Cho x > 1. Chứng minh c)Tìm giá trị nhỏ nhất của y Giải a) (Ở đây ta có thể áp dụng giải phương trình bậc hai bằng cách đặt ẩn phụ) b) Có c) Có: Vậy VD3.So sánh hai số sau và Giải Có Vậy a < b. C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Thực hiện phép tính, rút gọn biểu thức 2.Tính giá trị của biểu thức 3.Chứng minh a) b) c) d) là một số nguyên. 4.Cho a) Rút gọn A và B. b) Tìm x để A = B. 5.Cho . Tìm số nguyên x để A nhận giá trị nguyên. 6.Tìm x, biết: §4.HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN A.KIẾN THỨC CƠ BẢN 1.Định lý Pitago vuông tại A 2.Hệ thức lượng trong tam giác vuông 1) AB2 = BH.BC; AC2 = CH.BC 2) AB.AC = AH.BC 3) AH2 = BH.HC 4) Kết quả: -Với tam giác đều cạnh là a, ta có: 3.Tỉ số lượng giác của góc nhọn Đặt khi đó: Kết quả suy ra: 4) Cho nhọn, BC = a; AC = b; AB = c khi đó: B.MỘT SỐ VÍ DỤ VD1.Cho tam giác ABC có AB>AC, kẻ trung tuyến AM và đường cao AH. Chứng minh: VD2.Cho hình thang ABCD (AB//CD có AB = 3cm; CD = 14cm; AC = 15cm; BD = 8cm. a) Chứng minh AC vuông góc với BD. b) Tính diện tích hình thang. VD3.Tính diện tích hình bình hành ABCD biết AD = 12; DC = 15; ADC=700. C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Cho tam giác ABC vuông cân tại A, trung tuyến BD. Gọi I là hình chiếu của C trên BD, H là hình chiếu của I trên AC. Chứng minh: AH = 3HI. 2.Qua đỉnh A của hình vuông ABCD cạnh bằng a, vẽ một đường thẳng cắt BC ở E và cắt đường thẳng DC ở F. Chứng minh: 3.Cho tam giác cân ABC có đáy BC = a; BAC = 2; . Kẻ các đường cao AE, BF. a) Tính các cạnh của tam giác BFC theo a và tỉ số lượng giác của góc . b) Tính theo a, theo các tỉ số lượng giác của góc và , các cạnh của tam giác ABF, BFC. c) Từ các kết quả trên, chứng minh các đẳng thức sau: ------------------------------------------------------------------ §5.PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH (Bậc nhất) A.KIẾN THỨC CƠ BẢN 1.Phương trình bậc nhất một ẩn -Quy đồng khử mẫu. -Đưa về dạng ax + b = 0 (a ≠ 0) -Nghiệm duy nhất là 2.Phương trình chứa ẩn ở mẫu -Tìm ĐKXĐ của phương trình. -Quy đồng và khử mẫu. -Giải phương trình vừa tìm được. -So sánh giá trị vừa tìm được với ĐKXĐ rồi kết luận. 3.Phương trình tích Để giái phương trình tích ta chỉ cần giải các phương trình thành phần của nó. Chẳng hạn: Với phương trình A(x).B(x).C(x) = 0 4.Phương trình có chứa hệ số chữ (Giải và biện luận phương trình) Dạng phương trình này sau khi biến đổi cũng có dạng ax + b = 0. Song giá trị cụ thể của a, b ta không biết nên cần đặt điều kiện để xác định số nghiệm của phương trình. -Nếu a ≠ 0 thì phương trình có nghiệm duy nhất . -Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm. -Nếu a = 0 và b ≠ 0 thì phương trình vô nghiệm. 5.Phương trình có chứa dấu giá trị tuyệt đối Cần chú ý khái niệm giá trị tuyệt đối của một biểu thức 6.Hệ phương trình bậc nhất Cách giải chủ yếu dựa vào hai phương pháp cộng đại số và thế. Chú ý phương pháp đặt ẩn phụ trong một số trường hợp xuất hiện các biểu thức giống nhau ở cả hai phương trình. 7.Bất phương trình bậc nhất Với bất phương trình bậc nhất thì việc biến đổi tương tự như với phương trình bậc nhất. Tuy nhiên cần chú ý khi nhân và cả hai vế với cùng một số âm thì phải đổi chiều bất phương trình. B.MỘT SỐ VÍ DỤ VD1.Giải các phương trình sau a) b) c) d) (*) Giải (Vô lý) Vậy phương trình vô nghệm. Vậy phương trình có nghiệm x = 6. c) ĐKXĐ: Vậy phương trình có nghiệm x = - 4. d) Lập bảng xét dấu x 3 7 x – 3 - 0 + + x - 7 - - 0 + -Xét x < 3: (*) (loại) -Xét : (*) (t/mãn) -Xét : (*) (loại) Vậy phương trình có nghiệm x = 4. VD2.Giải và biện luận phương trình sau a) (1) b) (2) Giải a) ĐK: a ≠ 0; b ≠ 0. -Nếu b – a ≠ 0 thì -Nếu b – a = 0 thì phương trình có vô số nghiệm. Vậy: -Với b ≠ a, phương trình có nghiệm duy nhất x = 2(b + a). -Với b = a, phương trình có vô số nghiệm b) ĐKXĐ: -Nếu a + 1 ≠ 0 thì -Nếu a + 1 = 0 thì phương trình vô nghiệm. Vậy: -Với a ≠ -1 và a ≠ -2 thì phương trình có nghiệm duy nhất -Với a = -1 hoặc a = -2 thì phương trình vô nghiệm. VD3.Giải các hệ phương trình sau Giải hoặc b) ĐK: đặt Khi đó, có hệ mới Thay trở lại, ta được: c) C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Giải các phương trình sau 2.Giải và biện luận các phương trình sau 3.Giải các hệ phương trình sau 4.Cho hệ phương trình a) Giải hệ với m = - b) Tìm m để hệ có nghiệm duy nhất sao cho x + y dương. §6.CHỨNG MINH BẰNG NHAU – SONG SONG, VUÔNG GÓC - ĐỒNG QUY, THẲNG HÀNG A.KIẾN THỨC CƠ BẢN 1.Tam giác bằng nhau a) Khái niệm: b) Các trường hợp bằng nhau của hai tam giác: c.c.c; c.g.c; g.c.g. c) Các trường hợp bằng nhau của hai tam giác vuông: hai cạnh góc vuông; cạnh huyền và một cạnh góc vuông; cạnh huyền và một góc nhọn. d) Hệ quả: Hai tam giác bằng nhau thì các đường cao; các đường phân giác; các đường trung tuyến tương ứng bằng nhau. 2.Chứng minh hai góc bằng nhau -Dùng hai tam giác bằng nhau hoặc hai tam giác đồng dạng, hai góc của tam giác cân, đều; hai góc của hình thang cân, hình bình hành, -Dùng quan hệ giữa các góc trung gian với các góc cần chứng minh. -Dùng quan hệ các góc tạo bởi các đường thẳng song song, đối đỉnh. -Dùng mối quan hệ của các góc với đường tròn.(Chứng minh 2 góc nội tiếp cùng chắn một cung hoặc hai cung bằng nhau của một đường tròn, ) 3.Chứng minh hai đoạn thẳng bằng nhau -Dùng đoạn thẳng trung gian. -Dùng hai tam giác bằng nhau. -Ứng dụng tính chất đặc biệt của tam giác cân, tam giác đều, trung tuyến ứng với cạnh huyền của tam giác vuông, hình thang cân, hình chữ nhật, -Sử dụng các yếu tố của đường tròn: hai dây cung của hai cung bằng nhau, hai đường kính của một đường tròn, -Dùng tính chất đường trung bình của tam giác, hình thang, 4.Chứng minh hai đường thẳng, hai đoạn thẳng song song -Dùng mối quan hệ giữa các góc: So le bằng nhau, đồng vị bằng nhau, trong cùng phía bù nhau, -Dùng mối quan hệ cùng song song, vuông góc với đường thẳng thứ ba. -Áp dụng định lý đảo của định lý Talet. -Áp dụng tính chất của các tứ giác đặc biệt, đường trung bình của tam giác. -Dùng tính chất hai dây chắn giữa hai cung bằng nhau của một đường tròn. 5.Chứng minh hai đường thẳng vuông góc -Chứng minh chúng song song với hai đường vuông góc khác. -Dùng tính chất: đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại. -Dùng tính chất của đường cao và cạnh đối diện trong một tam giác. -Đường kính đi qua trung điểm của dây. -Phân giác của hai góc kề bù nhau. 6.Chứng minh ba điểm thẳng hàng -Dùng tiên đề Ơclit: Nếu AB//d; BC//d thì A, B, C thẳng hàng. -Áp dụng tính chất các điểm đặc biệt trong tam giác: trọng tâm, trực tâm, tâm đường tròn ngoại tiếp, -Chứng minh 2 tia tạo bởi ba điểm tạo thành góc bẹt: Nếu góc ABC bằng 1800 thì A, B, C thẳng hàng. -Áp dụng tính chất: Hai góc bằng nhau có hai cạnh nằm trên một đường thẳng và hai cạnh kia nằm trên hai nửa mặt phẳng với bờ là đường thẳng trên. -Chứng minh AC là đường kính của đường tròn tâm B. 7.Chứng minh các đường thẳng đồng quy -Áp dụng tính chất các đường đồng quy trong tam giác. -Chứng minh các đường thẳng cùng đi qua một điểm: Ta chỉ ra hai đường thẳng cắt nhau tại một điểm và chứng minh đường thẳng còn lại đi qua điểm đó. -Dùng định lý đảo của định lý Talet. B.MỘT SỐ VÍ DỤ VD1.Cho một nửa lục giác đều ABCD nội tiếp trong nửa đường tròn (O; R). Hai tiếp tuyến tại B và D cắt nhau ở T. a) Chứng minh rằng OT//AB.(góc BAD = góc TOD) b) Chứng minh ba điểm O, C, T thẳng hàng.(phân giác BOD; song song với AB) c) Tính chu vi và diện tích của tam giác TBD theo R.(P = ; S = ) d) Tính theo R diện tích giới hạn bởi hai cạnh TB, TD và cung BCD. (S = VD2.Cho nửa đường tâm O đường kính AB = 2R, M là trung điểm AO. Các đường vuông góc với AB tại M và O cắt nửa đường tròn tại D và C. a) Tính AD, AC, BD và DM theo R.(AD = R; AC = ; BD = ; DM = ) b) Tính các góc của tứ giác ABCD.(ABD = 300; ABC = 450; BCD = 1200; ADC = 1350) c) Gọi H là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh rằng IH vuông góc với AB.(AC, BD là các đường cao của tam giác IAB) VD3.Cho tam giác ABC đều cạnh a. Kéo dài BC một đoạn CM = a. a) Tính các góc của tam giác ACM.(ACM = 1020; CAM = CMA = 300) b) Chứng minh Am vuông góc với AB.(MAB = 900) c) Kéo dài CA một đoạn AN = a và kéo dài AB một đoạn BP = a. Chứng tỏ tam giác MNP đều.(tgMCN = tgNAP = tgPBM) C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Cho hình vuông ABCD. Lấy điểm M trên đường chéo BD. Gọi E, F lần lượt là hình chiếu của M lên AB và AD. a) Chứng tỏ: CF = DE; CF vuông góc với DE. Từ đó tìm quỹ tích giao điểm N của CF và DE. (tgCFD = tgDAE; quỹ tích N là ¼ đường tròn-cung tròn DNO có đường kính CD) b) Chứng tỏ: CM = EF và CM vuông góc với EF. (tgCKM = tgFME, K là giao của FM và CB) c) Chứng minh rằng các đường thẳng CM, BF, DE đồng quy.(CM, ED, FB là ba đường cao của tam giác CEF) 2.Cho tam giác ABC vuông ở A. Đường tròn qua tâm O qua A tiếp xúc với BC tại B và đường tròn tâm I qua A tiếp xúc với BC tại C. a) Chứng minh hai đường tròn (O) và (I) tiếp xúc nhau tại A.(tgOAB; tgIAC cân; OAB + CAI + BAC = 1800; O, I, A thẳng hàng) b) Từ O kẻ đường vuông góc với AB và từ I kẻ đường vuông góc với AC. Chứng minh chúng cắt nhau tại trung điểm M của BC.(MA = MB = MC) c) Chứng minh MO vuông góc với MI.(OMI = 900) d) Kéo dài BA cắt đường tròn tâm I ở P. Chứng minh C, P, I thẳng hàng.(tính chất góc nội tiếp hoặc PIA + AIC = 1800) 3.Cho hai đường tròn (O), (O’) cắt nhau tại A và B sao cho góc OAO’ bằng 900. Qua A kẻ cát tuyến MAM’ vuông góc với AP trong đó P là trung điểm của OO’. M, M’ theo thứ tự là giao điểm của cát tuyến với hai đường tròn (O); (O’). Chứng minh: a) AM = AM’.(A là trung điểm của DC; OC, O’D vuông góc với MM’) b) Tam giác ABM cân.(tgOAC = tgOHA) c) BM vuông góc với BM’.(AB = AM’; t/c trung tuyến tam giác vuông) d) Với vị trí nào của cát tuyến MAM’ thì MM’có độ dài lớn nhất.(MM’=2OO’; MM’//OO’) ---------------------------------------------------------------- §7.PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0 (a ≠0) (1) *Trong trường hợp giải và biện luận, cần chú ý khi a = 0 phương trình trở thành bậc nhất một ẩn (§5). A.KIẾN THỨC CƠ BẢN 1.Các dạng và cách giải Dạng 1: c = 0 khi đó Dạng 2: b = 0 khi đó -Nếu thì . -Nếu thì phương trình vô nghiệm. Dạng 3: Tổng quát CÔNG THỨC NGHIỆM TỔNG QUÁT CÔNG THỨC NGHIỆM THU GỌN : phương trình có 2 nghiệm phân biệt : phương trình có 2 nghiệm phân biệt : phương trình có nghiệm kép : phương trình có nghiệm kép : phương trình vô nghiệm : phương trình vô nghiệm Dạng 4: Các phương trình đưa được về phương trình bậc hai Cần chú ý dạng trùng phương, phương trình vô tỉ và dạng đặt ẩn phụ, còn dạng chứa ẩn ở mẫu và dạng tích đã nói ở §5. 3.Hệ thức Viet và ứng dụng -Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì: -Nếu có hai số u và v sao cho thì u, v là hai nghiệm của phương trình x2 – Sx + P = 0. -Nếu a + b + c = 0 thì phương trình có nghiệm là x1 = 1; x2 = . -Nếu a – b + c = 0 thì phương trình có nghiệm là x1 = -1; x2 = . 4.Điều kiện có nghiệm của phương trình ax2 + bx + c = 0 (a ≠0) -(1) có 2 nghiệm ; có 2 nghiệm phân biệt . -(1) có 2 nghiệm cùng dấu . -(1) có 2 nghiệm dương -(1) có 2 nghiệm âm -(1) có 2 nghiệm trái dấu ac < 0 hoặc P < 0. 5.Tìm điều kiện của tham số để 2 nghiệm của phương trình thỏa mãn điều kiện nào đó. Trong những trường hợp này cần sử dụng hệ thức Viet và phương pháp giải hệ phương trình. B.MỘT SỐ VÍ DỤ VD1.Giải các phương trình sau Giải Vậy phương trình có 2 nghiệm phân biệt .. Vậy phương trình có 2 nghiệm phân biệt .. Vậy phương trình có 2 nghiệm phân biệt .. Có Theo hệ thức Viet, có: e) Đặt , ta có pt mới: t2 – 4t + 3 = 0. Có a + b + c = 1 + (-4) + 3 = 0. Vậy t1 = 1; t2 = 3. Suy ra: x1 = 1; x2 = 9. f) Đặt x2 + 5x + 4 = t, ta có: t .(t + 2) = 3 Suy ra: Vậy phương trình có hai nghiệm phân biệt VD2.Cho phương trình x2 + 3x – m = 0 (1) a) Giải phương trình với m = 4. b) Giải và biện luận theo m số nghiệm của phương trình (1). c) Tìm m để (1) có nghiệm x= -2. Tìm nghiệm còn lại. d) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn một trong các điều kiện sau: 1. 2x1 + 3x2 = 13. 2. Nghiệm này lớn hơn nghiệm kia ba đơn vị. 3. x12 + x22 = 11. e) Chứng tỏ rằng là nghiệm của phương trình mx2 – 3x – 1 = 0. Trong đó x1, x2 là hai nghiệm của (1). f) Tìm m để phương trình (1) có hai nghiệm cùng dấu. Em có nhận xét gì về hai nghiệm đó. Giải a) Với m = 4 ta có: x2 + 3x – 4 = 0 (a = 1; b = 3; c = -4) Nhận thấy: a + b + c = 1 + 3 + (-4) = 0 Theo hệ thức Viet, có: x1 = 1; x2 = b) có: phương trình vô nghiệm. c) Phương trình (1) có nghiệm x = -2, do đó: (-2)2 + 3(-2) – m = 0 m = -2 -Tìm nghiệm thứ hai cách 1: Thay m = -2 vào phương trình đã cho: x2 + 3x + 2 = 0 có a – b + c = 1 – 3 + 2 = 0 nên x1 = -1; x2 = Vậy nghiệm còn lại là x = - 1. Cách 2: Ta có x1 + x2 = Cách 3: Ta có x1x2 = d) Phương trình có hai nghiệm thỏa mãn 2x1 + 3x2 = 13 giải hệ tìm được x1 = -22; x2 = 19; m = 418. -Tương tự ta tìm được (x1 = -2; x2 = -3; m = -6); (m=1) e) Ta có mà Vậy là hai nghiệm của phương trình f) Phương trình có hai nghiệm cùng dấu Hai nghiệm này luôn âm. Vì S = - 3. C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Giải các phương trình sau 2.Cho phương trình , có hai nghiệm x1, x2. Không giải phương trình. Hãy tính giá trị các biểu thức sau: 3.Cho phương trình x2 + mx + m+3 = 0. a) Giải phương trình với m = -2. b) Giải và biện luận số nghiệm của phương trình. c) Tính x12 + x22 ; x13 + x23 theo m. d) Xác định giá trị của m để x12 + x22 = 10. e) Tìm m để 2x1 + 3x2 = 5. f) Tìm m để phương trình có nghiệm x = -3. Tính nghiệm còn lại. g) Tìm m để phương trình có 2 nghiệm cùng dấu dương. 4.Cho phương trình bậc hai: mx2 – (5m-2)x + 6m – 5 = 0. a) Giải phương trình với m = 2. b) Chứng minh phương trình luôn có 2 nghiệm phân biệt. c) Tìm m để phương trình có 2 nghiệm đối nhau. d) Tìm m để phương trình có 2 nghiệm là nghịch đảo của nhau. e) Tìm m để phương trình có nghiệm là x = 0. Tìm nghiệm còn lại. f) Tìm m để phương trình có hai nghiệm cùng âm. 5.Cho phương trình x2 – mx + m – 1 = 0, ẩn x, tam số m. a) Chứng tỏ phương trình có hai nghiệm x1, x2 với mọi m. Tính nghiệm kép (nếu có) cùng giá trị tương ứng của m. b) Đặt A = x12 + x22 – 6x1x2. +) Chứng minh A = m2 – 8m + 8. +) Tìm m để A = 8. +) Tìm giá trị nhỏ nhất của A và giá trị tương ứng của m. 6*.Cho phương trình bậc hai: ax2 + bx + c = 0 với abc ≠ 0. a) Tìm điều kiện để phương trình có hai nghiệm x1; x2. b) Lập phương trình nhận hai số làm nghiệm. c) Lập phương trình nhận hai số làm nghiệm. d) Lập phương trình nhận hai số làm nghiệm. e) Lập phương trình nhận hai số làm nghiệm. ----------------------------------------------------------------------------- §8.CHỨNG MINH HAI TAM GIÁC ĐỒNG DẠNG HỆ THỨC HÌNH HỌC A.KIẾN THỨC CƠ BẢN 1.Tam giác đồng dạng -Khái niệm: -Các trường hợp đồng dạng của hai tam giác: c – c – c; c – g – c; g – g. -Các trường hợp đồng dạng của hai tam giác vuông: góc nhọn; hai cạnh góc vuông; cạnh huyền - cạnh góc vuông *Tính chất: Hai tam giác đồng dạng thì tỉ số hai đường cao, hai đường phân giác, hai đường trung tuyến tương ứng, hai chu vi bằng tỉ số đồng dạng; tỉ số hai diện tích bằng bình phương tỉ số đồng dạng. 2.Phương pháp chứng minh hệ thức hình học -Dùng định lí Talet, tính chất đường phân giác, tam giác đồng dạng, các hệ thức lượng trong tam giác vuông, Giả sử cần chứng minh MA.MB = MC.MD -Chứng minh hai tam giác MAC và MDB đồng dạng hoặc hai tam giác MAD và MCB. -Trong trường hợp 5 điểm đó cùng nằm trên một đường thẳng thì cần chứng minh các tích trên cùng bằng tích thứ ba. Nếu cần chứng minh MT2 = MA.MB thì chứng minh hai tam giác MTA và MBT đồng dạng hoặc so sánh với tích thứ ba. Ngoài ra cần chú ý đến việc sử dụng các hệ thức trong tam giác vuông; phương tích của một điểm với đường tròn. B.MỘT SỐ VÍ DỤ VD1.Cho hình bình hành ABCD. Từ đỉnh A kẻ cát tuyến bất kì cắt đường chéo BD tại E, cắt cạnh BC tại F và cắt cạnh CD tại G. Chứng minh: a) Các tam giác DAE và BFE đồng dạng. b) Các tam giác DGE và BAE đồng dạng. c) AE2 = EF.EG. d) Tích BF.DG không đổi khi cát tuyến qua A thay đổi. VD2.Cho hình bình hành ABCD. Từ C kẻ CM vuông góc với AB, CN vuông góc với AD. Giả sử AC > BD. Chứng minh rằng: AB.AM + AD.AN = AC2. C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Cho tam giác ABC có ba góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Đường thẳng qua H vuông góc với MH cắt AB tại P, cắt AC tại Q. Chứng minh: a) b) c) HP = HQ. 2.Cho tam giác đều ABC. Gọi M là trung điểm của BC. Lấy P trên cạnh AB, Q trên cạnh AC sao cho góc PMQ bằng 600. a) Chứng minh . Từ đó suy ra PB.CQ có giá trị không đổi. b) Kẻ MH vuông góc với PQ, chứng minh . c) CHứng minh độ dài MH không đổi khi P, Q chạy trên AB, AC và vẫn thỏa mãn điều kiện góc PMQ bằng 600. 3.Cho tam giác ABC có BC = a; AC = b; AB = c (b > c) và các phân giác BD, CE. a) Tính độ dài CD, BE rồi suy ra CD > BE. b) Vẽ hình bình hành BEKD, chứng minh CE > EK. c) Chứng minh CE > BD. -------------------------------------------------------------------- §9.GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH A.KIẾN THỨC CƠ BẢN Phương pháp giải Bước 1. Gọi ẩn và đặt điều kiện: Gọi một (hai) trong số những điều chưa biết làm ẩn và đặt điều kiện cho ẩn. Bước 2. Biểu diễn các đại lượng chưa biết còn lại qua ẩn. Bước 3. Lập phương trình (hệ phương trình): Dựa vào mối quan hệ giữa đại lượng đã biết và chưa biết. Bước 4. Giải phương trình (hệ phương trình) vừa lập ở trên. Bước 5. Kết luận: Kiểm tra giá trị tìm được với điều kiện rồi kết luận. *Chú ý việc tóm tắt bài toán trước khi làm. B.MỘT SỐ VÍ DỤ 1.Để đi đoạn đường từ A đến B, một xe máy đã đi hết 3h20 phút, còn một ôtô chỉ đi hết 2h30phút. Tính chiều dài quãng đường AB biết rằng vận tốc của ôtô lớn hơn vận tốc xe máy 20km/h. Quãng đường (km) Thời gian (h) Vận tốc (km/h) Xe máy x 3h20ph = h Ôtô x 2h30ph = h Từ đó có phương trình , giải được x = 200 km. Vận tốc (km/h) Thời gian (h) Quãng đường (km) Xe máy x - 20 3h20ph = h Ôtô x 2h30ph = h Từ đó có phương trình , giải được x = 80 km/h. Vận tốc (km/h) Thời gian (h) Quãng đường (km) Xe máy x 3h20ph = h Ôtô x + 20 2h30ph = h Từ đó có phương trình , giải được x = 60 km/h. *Nhận xét: Trong các cách làm đó thì cách thứ nhất là ngắn gọn nhất. C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Cho 200g dung dịch có nồng độ muối là 10%. Phải pha thêm vào dung dịch đó một lượng nước là bao nhiêu để được dung dịch có nồng độ muối là 8%. 2.Có hai vòi nước, vòi 1 chảy đầy bể trong 1,5 giờ, vòi 2 chảy đầy bể trong 2 giờ. Người ta đã cho vòi 1 chảy trong một thời gian, rồi khóa lại và cho vòi 2 chảy tiếp, tổng cộng trong 1,8 giờ thì đầy bể. Hỏi mỗi vòi đã chảy trong bao lâu? 3.Tổng các chữ số hàng chục và hai lần chữ số hàng đơn vị của một số có hai chữ số bằng 18. Nếu đổi chỗ hai chữ số cho nhau thì được số mới lớn hơn số ban đầu là 54. Tìm số ban đầu. 4.Một đám đất hình chữ nhật có chu vi 124m. Nếu tăng chiều dài 5m và chiều rộng 3m thì diện tích tăng thêm 225m2. Tính kích thước của hình chữ nhật đó. 5.Một cửa hàng trong ngày bán được một số xe đạp và xe máy. Biết rằng số xe đạp bán được nhiều hơn số xe máy là 5 chiếc và tổng bình phương

File đính kèm:

  • docOn tap Toan 9(2).doc