Câu II : (2 điểm)
1. Tìm hệ số của số hạng chứa trong khai triển .
2. Một họp chứa 20 quả cầu đánh số từ 1 đến 20. Lấy ngẫu nhiên hai quả. Tính xác suất của các biến cố sau:
A: “Nhận được hai quả cầu ghi số chẵn”
Câu III : (1 điểm) Trong mặt phẳng Oxy cho , điểm M(1;4) và đường thẳng .Tìm phương trình đường thẳng d’ ảnh của d qua phép tịnh tiến
Câu IV : (2 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy là AB và CD. Gọi I, J lần lượt là trung điểm của AD, BC và gọi G là trọng tâm của tam giác SAB.
a) Tìm giao tuyến của hai mặt phẳng (SBC) và (IJG).
b) Xác định thiết diện của (IJG) với hình chóp S.ABCD.
5 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 964 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Kiểm tra chất lượng học kỳ I năm học: 2012-2013 môn thi: Toán lớp 11 (Đề dề xuất 24), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP
TRƯỜNG THPT TRÀM CHIM
ĐỀ ĐỀ XUẤT
KIỂM TRA CHẤT LƯỢNG HỌC KỲ I
Năm học 2012 – 2013
Môn thi: TOÁN – LỚP 11
Thời gian: 90 phút (không kể thời gian phát đề)
Ngày thi: …/12/2012
I. Phần chung dành cho tất cả học sinh: (8 điểm)
Câu I : (3 điểm )
1. Tìm tập xác định của hàm số
2. Giải các phương trình sau:
Câu II : (2 điểm)
1. Tìm hệ số của số hạng chứa trong khai triển .
2. Một họp chứa 20 quả cầu đánh số từ 1 đến 20. Lấy ngẫu nhiên hai quả. Tính xác suất của các biến cố sau:
A: “Nhận được hai quả cầu ghi số chẵn”
Câu III : (1 điểm) Trong mặt phẳng Oxy cho , điểm M(1;4) và đường thẳng .Tìm phương trình đường thẳng d’ ảnh của d qua phép tịnh tiến
Câu IV : (2 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy là AB và CD. Gọi I, J lần lượt là trung điểm của AD, BC và gọi G là trọng tâm của tam giác SAB.
a) Tìm giao tuyến của hai mặt phẳng (SBC) và (IJG).
b) Xác định thiết diện của (IJG) với hình chóp S.ABCD.
II. Phần tự chọn: (2 điểm) Học sinh chọn 1 trong 2 phần sau:.
Phần 1: Theo chương trình chuẩn:
Câu Va : (1 điểm) Tìm số hạng đầu tiên và công sai của cấp số cộng biết rằng .
Câu VIa : (1 điểm) Có bao nhiêu số tự nhiên gồm sáu chữ số khác nhau trong đó có đúng ba chữ số chẵn, ba chữ số lẻ và các chữ số phải khác 0.
Phần 2: Theo chương trình nâng cao:
Câu Vb : (1 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Câu VIb : (1 điểm) Có bao nhiêu số tự nhiên gồm năm chữ số khác nhau sao cho các chữ số đều khác không và luôn có mặt đồng thời các số 1, 2, 5.HẾT.
HƯỚNG DẪN CHẤM ĐỀ ĐỀ XUẤT
Câu
Nội dung
Thang điểm
I.1
Để hàm số có nghĩa khi và chỉ khi
0,25
0,5
Vậy tập xác định của hàm số đã cho là
0,25
I.2
0,25
0,25
0,25
0,25
0,25
0,25
0,5
II.1
Ta có:
0,25
0,25
Theo đề bài ta có:
0,25
Vậy hệ số của số hạng chứa là .
0,25
II.2
Số phần tử của không gian mẫu bằng số tổ hợp chập 2 của 20
0,55
Ta có:
0,25
Vậy
0,25
III
b) Gọi N(x;y) là điểm bất kì thuộc đường thẳng d.
Gọi N’(x;y) là ảnh của N qua phép tịnh tiến vectơ .
0,25
Ta có:
0,25
Thế (1) vào phương trình của đường thẳng d ta có:
0,25
Vậy d’:
0,25
IV
Ta có: (1)
0,25
Qua G kẻ đường thẳng song song AB cắt SA tại N, SB tại M.
0,25
Ta có: (2)
0,25
Từ (1) và (2) ta có
0,25
Ta có:
0.25
0.25
0.25
Vậy thiết diện cần tìm là tứ giác IJMN.
0,25
Va
Ta có:
0,25
0,25
0,25
0,25
VIa
Chọn ba số lẻ trong năm số lẻ 1, 3, 5, 7, 9 có cách.
0,25
Chọn ba số chẵn trong số bốn số chẵn 2, 4, 6, 8 có cách.
0,25
Sắp xếp ba số chẵn và ba số lẻ để được một số tự nhiên có sáu chữ số khác nhau có 6! cách.
0,25
Vậy có 6!= 28800 số tự nhiên gồm sáu chữ số khác nhau trong đó có đúng ba chữ số chẵn, ba chữ số lẻ và các chữ số phải khác 0.
0,25
Vb
Ta có:
0,25
0,25
Vậy maxy = - 1 khi
0,25
miny = -7 khi
0,25
VIb
Chọn hai số trong sáu số 3, 4, 6, 7, 8, 9 có cách.
0,25
Sắp xếp năm số để được một số tự nhiên có năm chữ số khác nhau và các chữ số đều khác không có 5! cách.
0,25
Vậy số các số tự nhiên gồm năm chữ số khác nhau sao cho các chữ số đều khác không và luôn có mặt đồng thời các số 1, 2, 5 là 5! = 1800 số.
0,5
File đính kèm:
- 24 TOAN 11 DE HK1 2013 DONG THAP.doc