Câu 1 ( 2 điểm )
Cho phương trình (m2 + m + 1 )x2 - ( m2 + 8m + 3 )x – 1 = 0
a) Chứng minh x1x2 < 0 .
b) Gọi hai nghiệm của phương trình là x1, x2 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức :
S = x1 + x2 .
1 trang |
Chia sẻ: quoctuanphan | Lượt xem: 820 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Kiểm tra cuối năm môn Toán Lớp 9 Đề số 91, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề số 91
Câu 1 ( 2 điểm )
Cho phương trình (m2 + m + 1 )x2 - ( m2 + 8m + 3 )x – 1 = 0
Chứng minh x1x2 < 0 .
Gọi hai nghiệm của phương trình là x1, x2 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức :
S = x1 + x2 .
Câu 2 ( 2 điểm )
Cho phương trình : 3x2 + 7x + 4 = 0 . Gọi hai nghiệm của phương trình là x1 , x2 không giải phương trình lập phương trình bậc hai mà có hai nghiệm là : và .
Câu 3 ( 3 điểm )
Cho x2 + y2 = 4 . Tìm giá trị lớn nhất , nhỏ nhất của x + y .
Giải hệ phương trình :
Giải phương trình : x4 – 10x3 – 2(m – 11 )x2 + 2 ( 5m +6)x +2m = 0
Câu 4 ( 3 điểm )
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O . Đường phân giác trong của góc A , B cắt đường tròn tâm O tại D và E , gọi giao điểm hai đường phân giác là I , đường thẳng DE cắt CA, CB lần lượt tại M , N .
Chứng minh tam giác AIE và tam giác BID là tam giác cân .
Chứng minh tứ giác AEMI là tứ giác nội tiếp và MI // BC .
Tứ giác CMIN là hình gì ?
File đính kèm:
- KT cuoi nam d91.doc