Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ

Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ

A. Phương pháp đặt ẩn phụ

Có 3 bước cơ bản trong phương pháp này :

- Đặt ẩn phụ và gán luôn điều kiện cho ẩn phụ

- Đưa phương trình ban đầu về phương trình có biến là ẩn phụ

Tiến hành giải quyết phương trình vừa tạo ra này . Đối chiếu với điều kiện để chọn ẩn phụ thích hợp.

- Giải phương trình cho bởi ẩn phụ vừa tìm được và kết luận nghiệm

* Nhận xét :

- Cái mấu chốt của phương pháp này chính là ở bước đầu tiên . Lí do là nó quyết định đến toàn bộ lời giải hay, dở , ngắn hay dài của bài toán .

- Có 4 phương pháp đặt ẩn phụ mà chúng tôi muốn nêu ra trong bài viết này đó là :

+ PP Lượng giác hoá

+ PP dùng ẩn phụ không triệt để

+ PP dùng ẩn phụ đưa về dạng tích

+ PP dùng ẩn phụ đưa về hệ

Sau đây là bài viết :

 

doc8 trang | Chia sẻ: luyenbuitvga | Lượt xem: 2459 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ A. Phương pháp đặt ẩn phụ Có 3 bước cơ bản trong phương pháp này : - Đặt ẩn phụ và gán luôn điều kiện cho ẩn phụ - Đưa phương trình ban đầu về phương trình có biến là ẩn phụ Tiến hành giải quyết phương trình vừa tạo ra này . Đối chiếu với điều kiện để chọn ẩn phụ thích hợp. - Giải phương trình cho bởi ẩn phụ vừa tìm được và kết luận nghiệm * Nhận xét : - Cái mấu chốt của phương pháp này chính là ở bước đầu tiên . Lí do là nó quyết định đến toàn bộ lời giải hay, dở , ngắn hay dài của bài toán . - Có 4 phương pháp đặt ẩn phụ mà chúng tôi muốn nêu ra trong bài viết này đó là : + PP Lượng giác hoá + PP dùng ẩn phụ không triệt để + PP dùng ẩn phụ đưa về dạng tích + PP dùng ẩn phụ đưa về hệ Sau đây là bài viết : B. Nội dung phương pháp I. Phương pháp lượng giác hoá 1. Nếu thì ta có thể đặt hoặc Ví dụ 1 : Lời giải :  ĐK : Đặt Phương trình đã cho trở thành : cos()( ) = 0 Kết hợp với điều kiện của t suy ra : Vậy phương trình có 1 nghiệm : Ví dụ 2 : Lời giải : ĐK : Khi đó VP > 0 . Nếu Nếu . Đặt , với ta có : ( ) ( ) = 0 Vậy nghiệm của phương trình là Ví dụ 3 :   Lời giải : ĐK : Đặt phương trình đã cho trở thành : Vậy nghiệm của phương trình là Ví dụ 3 : Lời giải :  ĐK : Đặt phương trình đã cho trở thành : Vậy phương trình có nghiệm duy nhất Ví dụ 4 HD : Nếu : phương trình không xác định . Chú ý với ta có : vậy để giải phương trình (1) ta chỉ cần xét với Đặt khi đó phương trình đã cho trở thành : 2. Nếu thì ta có thể đặt : Ví dụ 5 :    Lời giải : ĐK : Đặt Phương trình đã cho trở thành : kết hợp với điều kiện của t suy ra Vậy phương trình có 1 nghiệm : TQ : Ví dụ 6 :   Lời giải : ĐK : Đặt phương trình đã cho trở thành : (thỏa mãn) TQ : với a,b là các hằng số cho trước : 3. Đặt để đưa về phương trình lượng giác đơn giản hơn : Ví dụ 7 :   (1) Lời giải : Do không là nghiệm của phương trình nên : (1) (2) Đặt . Khi đó (2) trở thành : Suy ra (1) có 3 nghiệm : Ví dụ 8 :   Lời giải : ĐK : Đặt phương trình đã cho trở thành : Kết hợp với điều kiện su ra : Vậy phương trình có 1 nghiệm :   4. Mặc định điều kiện : . sau khi tìm được số nghiệm chính là số nghiệm tối đa của phương trình và kết luận : Ví dụ 9 :   Lời giải : phương trình đã cho tương đương với : (1) Đặt : (1) trở thành : Suy ra (1) có tập nghiệm : Vậy nghiệm của phương trình đã cho có tập nghiệm chính là S Phương pháp đặt ẩn phụ trong giải phương trình vô tỷ (2) II. Phương pháp dùng ẩn phụ không triệt để * Nội dung phương pháp : Đưa phương trình đã cho về phương trình bậc hai với ẩn là ẩn phụ hay là ẩn của phương trình đã cho : Đưa phương trình về dạng sau : khi đó : Đặt . Phương trình viết thành : Đến đây chúng ta giải t theo x. Cuối cùng là giải quyết phương trình sau khi đã đơn giản hóa và kết luận : Ví dụ 1 :   (1) lời giải : ĐK : Đặt Lúc đó : (1) Phương trình trở thành : Giải phương trình trên với ẩn t , ta tìm được : Do nên không thỏa điều kiện . Với thì : ( thỏa mãn điều kiên Ví dụ 2 :   Lời giải : ĐK : Đặt . phương trình đã cho trở thành : * Với ,  ta có : (vô nghiệm vì : ) * Với , ta có : Do không là nghiệm của phương trình nên : Bình phương hai vế và rút gọn ta được : (thỏa mãn) TQ : Ví dụ 3 :   Lời giải : Đặt . Phương trình đã cho viết thành : Từ đó ta tìm được hoặc Giải ra được : . * Nhận xét :  Cái khéo léo trong việc đặt ẩn phụ đã được thể hiện rõ trong ở phương pháp này và cụ thể là ở ví dụ trên . Ở bài trên nếu chỉ dừng lại với việc chọn ẩn phụ thì không dễ để giải quyết trọn vẹn nó . Vấn đề tiếp theo chính là ở việc kheo léo biến đổi phần còn lại để làm biến mất hệ số tự do , việc gải quyết t theo x được thực hiện dễ dàng hơn . ví dụ 4 : Lời giải :  ĐK : Đặt . phương trình đã cho trở thành : Giải ra : hoặc (loại) * ta có : Vậy là các nghiệm của phương trình đã cho . ví dụ 5 :   Lời giải : ĐK : Đặt Phương trình đã cho trở thành :

File đính kèm:

  • docPP dat an phu trong giai PT vo ty.doc