Tài liệu bồi dưỡng học sinh giỏi lớp 9

ĐẠI SỐ

CHUYÊN ĐỀ 1: SỐ CHÍNH PHƯƠNG

I. ĐỊNH NGHĨA: Số chính phương là số bằng bình phương đúng của một số nguyên.

II. TÍNH CHẤT:

1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9 ; không thể có chữ số tận cùng bằng 2, 3, 7, 8.

2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.

3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n N).

4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n N).

5. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2

Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn.

Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.

6. Số chính phương chia hết cho 2 thì chia hết cho 4.

 Số chính phương chia hết cho 3 thì chia hết cho 9.

 Số chính phương chia hết cho 5 thì chia hết cho 25.

 Số chính phương chia hết cho 8 thì chia hết cho 16.

 

doc94 trang | Chia sẻ: thanhthanh29 | Lượt xem: 467 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Tài liệu bồi dưỡng học sinh giỏi lớp 9, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐẠI SỐ CHUYÊN ĐỀ 1: SỐ CHÍNH PHƯƠNG I. ĐỊNH NGHĨA: Số chính phương là số bằng bình phương đúng của một số nguyên. II. TÍNH CHẤT: 1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9 ; không thể có chữ số tận cùng bằng 2, 3, 7, 8. 2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn. 3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n N). 4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n N). 5. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn. Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2 Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn. Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ. 6. Số chính phương chia hết cho 2 thì chia hết cho 4. Số chính phương chia hết cho 3 thì chia hết cho 9. Số chính phương chia hết cho 5 thì chia hết cho 25. Số chính phương chia hết cho 8 thì chia hết cho 16. Bài tập vận dụng: Dạng 1`: Chững minh một số là số chính phương: Bài 1: Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương. Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4 Đặt x2 + 5xy + 5y2 = t ( t Z) thì A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2 V ì x, y, z Z nên x2 Z, 5xy Z, 5y2 Z x2 + 5xy + 5y2 Z Vậy A là số chính phương. Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương. Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n N). Ta có n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1 = (n2 + 3n)( n2 + 3n + 2) + 1 (*) Đặt n2 + 3n = t (t N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = ( t + 1 )2 = (n2 + 3n + 1)2 Vì n N nên n2 + 3n + 1 N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương. Bài 3: Cho a = 111 ; b = 10005 2008 chữ số 1 2007 chữ số 0 Chứng minh là số tự nhiên. Cách 1: Ta có a = 111 = ; b = 10005 = 1000 + 5 = 102008 + 5 2 2008 chữ số 1 2007 chữ số 0 2008 chữ số 0 ab+1 = + 1 = = 2 = = Ta thấy 102008 + 2 = 10002 3 nên N hay là số tự nhiên. 2007 chữ số 0 Cách 2: b = 10005 = 1000 – 1 + 6 = 999 + 6 = 9a +6 2007 chữ số 0 2008 chữ số 0 2008 chữ số 9 DẠNG 2: TÌM GIÁ TRỊ CỦA BIẾN ĐỂ BIỂU THỨC LÀ SỐ CHÍNH PHƯƠNG Bài1: Tìm số tự nhiên n sao cho các số sau là số chính phương: a. n2 + 2n + 12 b. n ( n+3 ) c. 13n + 3 d. n2 + n + 1589 Giải a. Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k N) (n2 + 2n + 1) + 11 = k2 k2 – (n+1)2 = 11 (k+n+1)(k-n-1) = 11 Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết (k+n+1)(k-n-1) = 11.1 k+n+1 = 11 k = 6 k – n - 1 = 1 n = 4 b. Đặt n(n+3) = a2 (n N) n2 + 3n = a2 4n2 + 12n = 4a2 (4n2 + 12n + 9) – 9 = 4a2 (2n + 3)- 4a2 = 9(2n + 3 + 2a)(2n + 3 – 2a)= 9 Nhận xét thấy 2n + 3 + 2a > 2n + 3 – 2a và chúng là những số nguyên dương, nên ta có thể viết (2n + 3 + 2a)(2n + 3 – 2a) = 9.1 2n + 3 + 2a = 9 n = 1 2n + 3 – 2a = 1 a = 2 c. Đặt 13n + 3 = y2 ( y N) 13(n – 1) = y2 – 16 13(n – 1) = (y + 4)(y – 4) (y + 4)(y – 4) 13 mà 13 là số nguyên tố nên y + 4 13 hoặc y – 4 13 y = 13k 4 (Với k N) 13(n – 1) = (13k 4 )2 – 16 = 13k.(13k 8) n = 13k2 8k + 1 Vậy n = 13k2 8k + 1 (Với k N) thì 13n + 3 là số chính phương. Đặt n2 + n + 1589 = m2 (m N) (4n2 + 1)2 + 6355 = 4m2 (2m + 2n +1)(2m – 2n -1) = 6355 Nhận xét thấy 2m + 2n +1> 2m – 2n -1 > 0 và chúng là những số lẻ, nên ta có thể viết (2m + 2n +1)(2m – 2n -1) = 6355.1 = 1271.5 = 205.31 = 155.41 Suy ra n có thể có các giá trị sau: 1588; 316; 43; 28. Bài 2: Tìm a để các số sau là những số chính phương: a2 + a + 43 a2 + 81 a2 + 31a + 1984 Kết quả: a. 2; 42; 13 b. 0; 12; 40 c. 12; 33; 48; 97; 176; 332; 565; 1728 Bài 3: Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! + + n! là một số chính phương . Với n = 1 thì 1! = 1 = 12 là số chính phương . Với n = 2 thì 1! + 2! = 3 không là số chính phương Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 32 là số chính phương Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; ; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3. Bài 4: Có hay không số tự nhiên n để 2006 + n2 là số chính phương. Giả sử 2006 + n2 là số chính phương thì 2006 + n2 = m2 (m N) Từ đó suy ra m2 – n2 = 2006 (m + n)(m - n) = 2006 Như vậy trong 2 số m và n phải có ít nhất 1 số chẵn (1) Mặt khác m + n + m – n = 2m 2 số m + n và m – n cùng tính chẵn lẻ (2) Từ (1) và (2) m + n và m – n là 2 số chẵn (m + n)(m - n) 4 Nhưng 2006 không chia hết cho 4 Điều giả sử sai. Vậy không tồn tại số tự nhiên n để 2006 + n2 là số chính phương. Bài 5: Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội số của 24. Vì n+1 và 2n+1 là các số chính phương nên đặt n+1 = k2 , 2n+1 = m2 (k, m N) Ta có m là số lẻ m = 2a+1 m2 = 4a (a+1) + 1 n = = = 2a(a+1) n chẵn n+1 lẻ k lẻ Đặt k = 2b+1 (Với b N) k2 = 4b(b+1) +1 n = 4b(b+1) n 8 (1) Ta có k2 + m2 = 3n + 2 2 (mod3) Mặt khác k2 chia cho 3 dư 0 hoặc 1, m2 chia cho 3 dư 0 hoặc 1. Nên để k2 + m2 2 (mod3) thì k2 1 (mod3) m2 1 (mod3) m2 – k2 3 hay (2n+1) – (n+1) 3 n 3 (2) Mà (8; 3) = 1 (3) Từ (1), (2), (3) n 24. C. DẠNG 3: TÌM SỐ CHÍNH PHƯƠNG Bài 1: Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A một đơn vị thì ta được số chính phương B. Hãy tìm các số A và B. Gọi A = abcd = k2. Nếu thêm vào mỗi chữ số của A một đơn vị thì ta có số B = (a+1)(b+1)(c+1)(d+1) = m2 với k, m N và 32 < k < m < 100 a, b, c, d N ; 1 ≤ a ≤ 9 ; 0 ≤ b, c, d ≤ 9 Ta có A = abcd = k2 B = abcd + 1111 = m2 m2 – k2 = 1111 (m-k)(m+k) = 1111 (*) Nhận xét thấy tích (m-k)(m+k) > 0 nên m-k và m+k là 2 số nguyên dương. Và m-k < m+k < 200 nên (*) có thể viết (m-k)(m+k) = 11.101 Do đó m – k == 11 m = 56 A = 2025 m + k = 101 n = 45 B = 3136 Bài 5: Tìm một số chính phương gồm 4 chữ số sao cho chữ số cuối là số nguyên tố, căn bậc hai của số đó có tổng các chữ số là một số chính phương. Gọi số phải tìm là abcd với a, b, c, d nguyên và 1 ≤ a ≤ 9 ; 0 ≤ b,c,d ≤ 9 abcd chính phương d{ 0,1,4,5,6,9} d nguyên tố d = 5 Đặt abcd = k2 < 10000 32 ≤ k < 100 k là một số có hai chữ số mà k2 có tận cùng bằng 5 k tận cùng bằng 5 Tổng các chữ số của k là một số chính phương k = 45 abcd = 2025 Vậy số phải tìm là 2025 Bài 2: Tìm số tự nhiên có hai chữ số biết rằng hiệu các bình phương của số đó và viết số bởi hai chữ số của số đó nhưng theo thứ tự ngược lại là một số chính phương Gọi số tự nhiên có hai chữ số phải tìm là ab ( a,b N, 1 ≤ a,b ≤ 9 ) 2 2 Số viết theo thứ tự ngược lại ba Ta có ab - ba = ( 10a + b ) 2 – ( 10b + a )2 = 99 ( a2 – b2 ) 11 a2 - b2 11 Hay ( a-b )(a+b ) 11 2 2 Vì 0 < a - b ≤ 8 , 2 ≤ a+b ≤ 18 nên a+b 11 a + b = 11 2 2 Khi đó ab - ba = 32 . 112 . (a - b) Để ab - ba là số chính phương thì a - b phải là số chính phương do đó a-b = 1 hoặc a - b = 4 Nếu a-b = 1 kết hợp với a+b = 11 a = 6, b = 5, ab = 65 Khi đó 652 – 562 = 1089 = 332 Nếu a - b = 4 kết hợp với a+b = 11 a = 7,5 ( loại ) Vậy số phải tìm là 65 Chuyên đề 2: CỰC TRỊ CỦA MỘT BIỂU THỨC I/ GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦẢ MỘT BIỂU THỨC 1/ Cho biểu thức f( x ,y,...) a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu hai điều kiện sau đây được thoả mãn: Với mọi x,y... để f(x,y...) xác định thì : f(x,y...) M ( M hằng số) (1) Tồn tại xo,yo ... sao cho: f( xo,yo...) = M (2) b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu hai điều kiện sau đây được thoả mãn : Với mọi x,y... để f(x,y...) xác định thì : f(x,y...) m ( m hằng số) (1’) Tồn tại xo,yo ... sao cho: f( xo,yo...) = m (2’) 2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của một biểu thức chẳng hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A 0 nhưng chưa thể kết luận được minA = 0 vì không tồn tại giá trị nào của x để A = 0 ta phải giải như sau: A = x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2 2 A = 2 x -2 = 0 x = 2 Vậy minA = 2 khi chỉ khi x = 2 II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN 1/ Tam thức bậc hai: Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c . Tìm GTNN của P nếu a 0. Tìm GTLN của P nếu a 0 Giải : P = ax2 + bx +c = a( x2 + x ) + c = a( x + )2 + c - Đặt c - =k . Do ( x + )2 0 nên : - Nếu a 0 thì a( x + )2 0 , do đó P k. MinP = k khi và chỉ khi x = - -Nếu a 0 thì a( x + )2 0 do đó P k. MaxP = k khi và chỉ khi x = - 2/ Đa thức bậc cao hơn hai: Ta có thể đổi biến để đưa về tam thức bậc hai Ví dụ : Tìm GTNN của A = x( x-3)(x – 4)( x – 7) Giải : A = ( x2 - 7x)( x2 – 7x + 12) Đặt x2 – 7x + 6 = y thì A = ( y - 6)( y + 6) = y2 - 36 -36 minA = -36 y = 0 x2 – 7x + 6 = 0 x1 = 1, x2 = 6. 3/ Biểu thức là một phân thức : a/ Phân thức có tử là hằng số, mẫu là tam thức bậc hai: Ví dụ : Tìm GTNN của A = . Giải : A = . = = . Ta thấy (3x – 1)2 0 nên (3x – 1) 2 +4 4 do đó theo tính chất a b thì với a, b cùng dấu). Do đó A - minA = - 3x – 1 = 0 x = . Bài tập áp dụng: 1. Tìm GTLN của BT : HD giải: . 2. Tìm GTLN của BT : HD Giải: 3. (51/217) Tìm giá trị nhỏ nhất của biểu thức: b/ Phân thức có mẫu là bình phương của nhị thức. Ví dụ : Tìm GTNN của A = . Giải : Cách 1 : Viết A dưới dạng tổng hai biểu thức không âm A = = 2 + 2 minA = 2 khi và chi khi x = 2. Cách 2: Đặt x – 1 = y thì x = y + 1 ta có : A = = 3 - + = ( -1)2 + 2 minA = 2 y = 1 x – 1 = 1 x = 2 Bài tập áp dụng: (Bồi dưỡng HSG toán đại số 9 TRẦN THỊ VÂN ANH) 1, (13/200) Tìm GTNN và GTLN của bt: 2, (36/210) Tìm GTNN của bt : 3, ( 45/ 214) Tìm GTNN và GTLN của bt: 4, ( 47, 48 /215) Tìm GTNN của bt : a, b, c/ Các phân thức dạng khác: Ví dụ : Tìm GTNN và GTLN của A = Giải Để tìm GTNN , GTLN ta viết tử thức về dạng bình phương của một số : A = = - 1 -1 Min A= -1 khi và chỉ khi x = 2 Tìm GTLN A = = 4 - 4 Bài tập áp dụng: (Bồi dưỡng HSG toán đại số 9 TRẦN THỊ VÂN ANH) 1, (42, 43/ 221) Tìm GTLN của bt: a, b, 3, (35, 36 / 221) Tìm GTNN của bt: a, Với x > 0; b, Với x > 0 4, (34, 36/ 221) Tìm GTNN của bt: a, với x > 0; b, Với x > 0 6, (68/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: Với x > 0 7, (69/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: Với x > 0 8, (70/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: Với x > 0 III/ TÌM GTNN, GTLN CỦA BT CÓ QUAN HỆ RÀNG BUỘC GIỮA CÁC BIẾN Ví dụ : Tìm GTNN của A = x3 + y3 + xy biết rằng x + y = 1 sử dụng điều kiện đã cho để rút gọn biểu thức A A = (x + y)( x2 –xy +y2) + xy = x2 – xy - y2 + xy = x2 + y2 Đến đây ta có nhiều cách giải Cách 1: sử dụng điều kiện đã cho làm xuất hiện một biểu thức có chứa A x + y = 1 x2 + 2xy + y2 = 1 (1) Mà (x – y)2 0 Hay: x2 - 2xy + y2 0 (2) Cộng (1) với (2) ta có 2(x2 + y2 ) 1 x2 + y2 minA = khi và chỉ khi x = y = HÌNH HỌC Chuyên đề 10 : BÀI TOÁN DỰNG HÌNH Nói đến dựng hình phải nhớ là dựng bằng thước và compa. Ta đã học những phép dựng hình cơ bản sau: Dựng một đoạn thẳng bằng một đoạn thẳng cho trước. Dựng một góc bằng một góc cho trước. Dựng đường trung trực của một đoạn thẳng cho trước ,dựng trung điểm của một đoạn thẳng cho trước. Dựng tia phân giác của một góc cho trước . Qua một điểm cho trước ,dựng một đường thẳng vuông góc với một đường thẳng cho trước . Qua một điểm nằm ngoài đường thẳng cho trước ,dựng đường thẳng song song với đường thẳng ấy . Ta đã vận dụng các phép dựng hình cơ bản để dựng tam giác biết ba cạnh ,hoặc biết hai cạnh và góc xen giữa,hoặc biết một cạnh và góc kề. Trong các bài toán dựng hình phức tạp hơn,ta phải tuân thủ các bước của phương pháp dựng hình như sau: Bước 1:Phân tích hình. Bước 2: Dựng hình. Bước 3:Chứng minh cách dựng trên thoả mãn yêu cầu của đề toán. Bước 4:Biện luận: Xem lại từng phép dựng đã thực hiện để xem có điều kiện ràng buộc không.Từ đó suy ra bài toán có mấy nghiệm hình. Thí dụ 1:Dựng tam giác ABC ,biết cạnh BC = a ,trung tuyến AM = m (a và m là những độ dài cho trước ) và góc giữa AM và đường cao AH. Phân tích:Giả sử bài toán đã giải xong,và ta đã dựng được tam giác ABC thoả mãn yêu cầu của đề toán .Phân tích hình đó theo hướng phát hiện một bộ phận của hình hội đủ các điều kiện để dựng được một cách chính xác.Đó là tam giác vuông AHM có cạnh huyền AM = m,và = cho trước.Tam giác đó hoàn toàn xác định nên dựng được. Sau khi dựng xong tam giác vuông AHM ,ta hoàn tất hình phải dựng chẳng khó khăn gì.Vậy ta có cách dựng như sau : Cách dựng: Dựng đoạn thẳng AM có độ dài m cho trước (phép dựng cơ bản a). Dựng = cho trước (phép dựng cơ bản b). Từ M kẻ MH Ax tại H (phép dựng cơ bản e). Bây giờ chỉ còn dựng hai đỉnh B,C .Cạnh BC nằm trên đường thẳng MH,nên trên đường thẳng MH ,ta lấy ở hai phía khác nhau đối với điểm M hai điểmB,C sao cho MB = MC = (phép dựng cơ bản c và a). Chứng minh: Rõ ràng tam giác trên đây thoả mãn đầy đủ các yêu cầu của đề toán :có cạnh BC = a cho trước , trung tuyến AM = m cho trước , = cho trước . Biện luận :Lần lại từng khâu dựng hình , khâu nào cũng được thực hiện không có gì trở ngại.Duy chỉ có góc cho trước và yêu cầu đề ra là của tam giác vuông AMH phải bằng ,thì rõ ràng phải là góc nhọn .Vậy với điều kiện này thì bài toán bao giờ cũng giải được và có một nghiệm hình . Thí dụ 2 :Dựng một tam giác ABC với trung tuyến AM có độ dài bằng một đoạn thẳng m cho trước ,và các góc MAB và MAC lần lượt bằng những góc và cho trước. Phân tích : Giảsử bài toán đã giải xong và ta đã dựng được tam giác ABC thoả mãn yêu cầu bài toán .Hình vẽ trên cho thấy không có một bộ phận nào của hình hội đủ điều kiện để dựng được. Thí dụ:Tam giác AMC chỉ có hai yếu tố được biết là = và AM = m ,nên không thể dựng được.Đây là lúc nhớ lại được những bài toán tương tự rất quí giá . Thí dụ ,nhớ bài :nếu kéo dài trung tuyến AM thêm một đoạn MD = AM ,thì hai tam giác AMB và DMC bằng nhau (c,g,c) nên 1=. Từ đó ,hình thành tam giác ACD với 2= , = 1= và AD = 2m. Tam giác đó hội đủ điều kiện để dựng được .Sau khi dựng được tam giác này ,ta sẽ dựng được điểm B,chẳng gì khó khăn. Cách dựng: Dựng đoạn thẳng AD = 2m. Dựng hai góc kề cạnh đó là = và = ,hai cạnh AC và DC giao nhau tại C.Sau đó ta vẽ trung tuyến CA của tam giác ACD và kéo dài thêm một đoạn MB =MC ,từ đó xác định đỉnh B của tam giác ABC cần dựng . Chứng minh:Theo cách dựng này ,rõ ràng tam giác AMB và tam giác DMC bằng nhau(c,g,c).Từ đó AM = = m , 1= = , 2= .Cho nên ,tam giác ABC dựng được thoả mãn đầy đủ các yêu cầu đề bài . Biện luận :Trên đây ta nói hai cạnh AC và DC giao nhau tại C.Thực ra là chúng chỉ giao nhau nếu + < 2v .Do đó bài toán luôn giải được và có một nghiệm hình. Thí dụ 3: Cho một góc xOy và một điểm M ở bên trong góc ấy .Dựng một đoạn thẳng AB sao cho AOx , BOy và M là trung điểm của AB. Phân tích :Giả sử bài toán giải xong và ta đã dựng được đoạn thẳng AB thoả mãn yêu cầu của đề bài là A Ox, B Oy và M là trung điểm của AB. Nếu kéo dài OM thêm đoạn MD = OM thì AMO = BMD(c,g,c) 1= .Từ đó , DB Ox .Ngược lại, nếu từ D kẻ DB Ox (B Oy ,rồi BM đến cắt Oxtại A thì AMO =BMD (g,c,g) với 1= 2 (đối đỉnh) ,1= (so le trong ,DB Ox) và MD =OM (do dựng ),từ đó AM = MB. 2. Cách dựng :Kéo dài OM thêm đoạn MD= OM ,rồi từ D kẻ đường thẳng song với Ox ,cắt Oy tại B.Tiếp đến kẻ BM cho đến cắt Ox tại A thì M là trung điểm của AB. 3. Chứng minh: AMO và BMD có : 1=2 (đối đỉnh) MO = MD (cách xác` định điểmD) 1= (so le trong –DB Ox) Do đó :AMO = BMD (g,c.g) AM = MD. 4.Biện luận : Bài toán luôn có một nghiệm. Phụ chú :Bài toán có thể phân tích cách khác : Kẻø MNOx (NOy) thì MN=.Ngược lại, nếu kẻ MNOx(NOy),và lấy điểm A trên Ox sao cho OA = 2MN,rồi kẻ AM đến cắt Oy tại B thì có AM =MB.Quả vậy ,gọi B là trung điểm của OAOP = PAPMON.Vậy BM phải đi qua trung điểm của AB,tức AM = MB . Qua phân tích này ta thấy rõ cách dựng và chứng minh .Bài toán luôn có một nghiệm . Thí dụ 4 :Cho một góc xOy và hai điểm A,B .Dựng một điểm cách đều hai cạnh Ox,Oy và cách đều hai điểm A,B. Phân tích : Giả sử bài toán đã giải xong và ta đã dựng được điểm M cách đều hai cạnh Ox, Oy và cách đều hai điểm A,B ,nghĩa là có MH = MK (MHOx,HOx, MKOy,KOy) và MA=MB. Vậy M vưà thuộc tia phân giác Ot của xOy, vừa thuộc đường trung trực d của AB nên M là giao điểm của Ot và d . 2. Cách dựng : Dựng tia phân giác Ot của góc xOy và đường trung trực d của AB ,d cắt Ot tại M. M là điểm cần dựng. 3.Chứng minh : MOt nên MH = MK . Md nên MA = MB. 4.Biện luận : d cắt Ot nếu AB không vuông góc với Ot .Bài toán có một nghiệm hình . Nếu AB Ot và OAOB thì Ot d :Bài toán vô nghiệm. Nếu ABOt và OA = OB thì d Ot .Bài toán có vô số nghiệm,nghĩa là bất kỳ điểm nào của Ot cũng vừa cách đều hai cạnh Ox và Oy,vừa cách đều A và B. Thí dụ 5 :Cho một góc nhọn xOy và một điểm A trên Oy.Tìm một điểm M trên đoạn OA sao cho nếu kẻ MP = MA. Phân tích :Giả sử bài toán đã giải xong và ta đã dựng được điểm M theo yêu cầu của đề bài. Kẻ PNAM và PN = AM thì AN NP , Có nghĩa là AN Ox (1) Mặt khác PN = AM = OP nên tam giác OPN cân : 1=1 Mà 2 = 1(góc so le trong-PNOy) Nên1=2. Điều đó có nghĩa là N nằm trên tia phân giác của góc xOy . Theo (1) thì N nằm trên đường thẳng vuông góc với Ox hạ từ A.Vậy N là giao điểm của đường thẳng đó với tia phân giác của góc xOy . Vị trí N hoàn toàn xác định .,do đó dựng được. Cách dựng :Kẻ tia phân giác Ot của góc xOy và từ A ,kẻ đường thẳng vuông góc với Ox , cắt Ot tại N .Từ N kẻ NPOy ,cắt Ox tại P .Từ P kẻ đường thẳng vuông góc với Ox, cắt Oy tại điểm N cần dựng . Chứng minh :NP Oy nên 1= 2 (so le trong ) Mà Ot là tia phân giác :1=2. Từ đó :1=1 Tam giác OPN cân tại P : OP = PN. MP và AN cùng vuông góc với Ox nên MP AN . Do đó: PN = AM (đoạn thẳng song song bị chắn bởi hai đường thẳng song song).(2) Từ (1),(2) suy ra: OP = AM. Biện luận : Góc xOy nhọn nên tia phân giác Ot cắt đường thẳng kẻ từ A vuông góc với Ox tại một điểm N duy nhất.Do đó bài toán có một nghiệm hình . BÀI TẬP Bài 1:Cho tam giác ABC vuông cân, cạnh huyền BC = 2a không đổi .Gọi H là trung điểm của BC . Hãy dựng điểm M trên đoạn AH sao cho khoảng cách từ M đến BC bằng tổng khoảng cách đến AB và AC . Tính theo a độ dài của HM tương ứng . HD: 1/ Gọi N là điểm đối xứng của M qua AB. 1. Phân tích :Giả sử đã dựng được M thuộc AH mà khoảng cách từ M đến BC bằng tổng khoảng cách từ M đến AB và AC. Ta có NAP MH = MK + ML =MN. MNH cân tại M = = . 2. Cách dựng :+Dựng điểm P là đối xứng của điểm H qua AB. +Dựng phân giác HN của AHB. +DỰng NM PH , M AH thì ta có M là điểm cần dựng . 3. Chứng minh: Thật vậy :MHN cân tại M MH = MN = MK+ ML. 4. Biện luận:BaØi toán có một nghiệm hình . 2/Đặt MH = x.TA có : AH = AM + MH . MA = a – x MH = 2MK x = 2 (a – x) x = x = a(2- ). Bài 2: Dựng một tam giác ,biết hai góc và một đường phân giác . Biết hai góc của một tam giác tức là biết cả góc thứ ba ,nên cho biết đường phân giác thuộc góc nào cũng vậy thôi.Do vậy ta sẽ dựng tam giác ABC,biết góc B bằng,góc C bằng và đường phân giác BD bằng một đoạn thẳng a cho trước . Phân tích :Giả sử bài toán đã giải xong và ta đã dựng được tam giác ABC theo yêu cầu của đề bài .Ta hãy tìm khâu” đột phá’tức là tìm một tam giác hội đủ các điềåu kiện để dựng được.Dễ dàng phát hiện được tam giác BDA có BD =a , == và =+ C =+ Cách dựng : Trước hết dựng một góc =. Dựng tia phân giác Bt của góc đó.Trên tia Bt dựng đoạn BD = a. Từ D dựng đường thẳng song song với By cắt Bx tại E.Dựng góc =. Cạnh Dv cắt Bx tại A và tia đối của tia Dv cắt By tại C. 3. Chứng minh : = = (so le trong ). Vậy = + =+ .Từ đó suy ra = . Vậy tam giác ABC đã dựng có = , = và tia phân giác BD = a . 4.Biện luận :bài toán luôn có nghiệm hình nếu + < 2v. Bài 3 :Dựng tam giác cân ABC (AB = AC ),biết chu vi bằng 2p và chiều cao AH=h Phân tích :Giả sử bài toán đã giải xong và ta dựng được tam giác ABC theo yêu cầu đề bài . Nếu trên tia đối của tia CB ta dựng đoạn thẳng CD = AC ,và trên tia đối của tia BC dựng đoạn thẳng BE = AB thì được đoạn DE = 2p,và đường cao AH=h là dựng được .Sau khi dựng được tam giác cân DAE ,ta xác định vị trí hai đỉnh B và C chẳng khó khăn gì ,bằng cách dựng đường trung trực của AE và AD. Cách dựng :Dựng đoạn thẳng DE = 2p.Dựng đường trung trực d của DE ,vuông góc với DE tại H.Dựng điểm A trên d sao cho AH = h .Dựng đường trung trực của AE và AD lần lượt cắt DE tại đỉnh B và C cần dựng . Chứng minh : RoÕ ràng AB = BE , AC = CD nên tam giác ABE và ACD là tam giác cân. = 2 , = 2 .Mà tam giác AED là tam giác cân(AE = AD) nên = .TưØ đó = ,và tam giác ABC là tam giác cân với đường cao AH = h .MaËt khác , chu vi tam giác ABC = AB +AC +BC =EB + BC + CD = 2p .Vậy là tam giác cânABC đã dựng đáp ứng các yêu cầu của đề bài. Biện luận : Bài toán luôn có một nghiệm hình . Bài 4:Dựng tam giác ABC biết chu vi bằng 2p và = , =. Phân tích :Giả sử bài toán đã giải xong và ta đã dựng được tam giác ABC theo yêu cầu đề bài. Nếu trên tia đối của tia BC ta dựng đoạn thẳng BE = AB , và trên tia đối của tia CB dựng đoạn thẳng CD = AC thì ta được đoạn thẳng DE = 2p .Hai tam giác ABE và ACD là tam giác cân nên: = = và = = .Vậy là tam giác ADE hội đủ các điều kiện để dựng được. Cách dựng : Dựng đoạn thẳng DE = 2 p , dựng góc = và góc =,hai cạnh EA và DA của hai góc E và D cắt nhau tại A . Dựng đường trung trực của AE và AD , cắt DE tại B và C cần dựng . Chứng minh : Các tam giác ABE vàACD là tam giác cân vì B thuộc đường trung trực của AE(AB = BE ) và C thuộc đường trung trực của AD (AC = CD ).Từ đó , =2 = và góc =2 =. Mặt khác , chu vi tam giác ABC = AB+AC+BC=BE+CD +BC = 2p. Vậy tam giác ABC thoả mãn yêu cầu đề bài . Biện luận : Bài toán có một nghiệm hình nếu + < 2v. BÀI TẬP Bài 1:Dựng tam giác ABC ,biết vị trí của ba điểm : Đỉnh A ,trung điểm M của cạnh AC và trọng tâm G của tam giác . Hướng dẫn :Trường hợp dựng hình như thế nầy là rất thuận lợi ,vì ngay từ đầu đã có tam giác AGM làm cơsở để hoàn tất hình cần dựng . Bài 2:Dựng tam giác ABC ( = 1v) ,biết đường cao AH và trung tuyến AM ứng với cạnh huyền. Bài 3: Dựng một tam giác vuông biết cạnh huyền và trung tuyến ứng với một cạnh góc vuông. Hướng dẫn :Chú ý rằng trong tam giác vuông ,nếu biết cạnh huyền thì biết luôn trung tuyến ứng với nó,thành ra biết hai trung tuyến và trọng tâm của tam giác . Baì 4: Dựng một tam giác biết một cạnh và hai trung tuyến xuất phát từ hai mút của cạnh đó . Bài 5:Dựng tam giác ABC biết cạnh BC và trung tuyến AM,BN. Hướng dẫn :Bài 4,5 biết hai trung tuyến tức là biết trọng tâm của tam giác . Bài 6:Dựng một tam giác biết độ dài ca ûba trung tuyến . Hướng dẫn :Kéo dài AD thêm một đoạn DI = GD = AD. Chứng minh CI = BG .Vậy tam giác CIG là hoàn toàn xác định,dựng được .Từ đó hoàn tất hình cần dựng . Bài 7: Dựng tam giác ABC biết giao điểm của ba đường cao với đường tròn ngoại tiếp là D,E,F. Hướng dẫn : Giả sử tam giác ABC đã dựng xong ,gọi H là trực tâm của tam giác ABC ,khi đó ,D,E,F là các điểm đối xứng của H qua BC, CA và AB . DA,BE, CF là ba đường phân giác của tam giác DEF cắt (O) tại A,B,C.Tam giác ABC là tam giác cần dựng. BaØi 8: Dựng hình thoi ABCD ,biết E là điểm trên AC ,M là một điểm trên BD, E cách giao điểm hai đường chéo là a ( cm ) và Q là điểm đối xứng của M qua cạnh AD . Hướng dẫn : Giả sử hình thoi ABCD đã dựng xong ,tâm O của nó là giao điểm của:-Đường tròn đường kính ME (vì MOE=1v) -Đường tròn (E; a) ,(vì EO = a (cm) ) Các đường thẳng EO và MO là những đường thẳng chứa các đường chéo AC và BD. A và D là giao điểm của EO và MO và đường trung trực của MQ .Từ đó xác định C và B đối xứng với A và D qua O. Bài 9: Cho hai điểm A và B ở cùng một phía đối với đường thẳng xy .Dựng một điểm M sao cho từ M nhìn đoạn AB dưới một góc cho trước và hai cạnh AM và MB chắn trên xy một đoạn thẳng có độ dài bằng m cho trước . Hướng dẫn : Giả sử bài toán đã dựng xong. Vẽ BC xy và BC = m . = = E ở trên cung chứa góc dựng trên đoạn AC và E thuộc xy. Lấy đoạn ED trên xy để có ED = m . M là giao điểm của AE và BD. Chuyên đề: 12 DIỆN TÍCH ĐA GIÁC VÀ PHƯƠNG PHÁP SỬ DỤNG DIỆN TÍCH TRONG CHỨNG MINH I. NỘI DUNG KIẾN THỨC CƠ BẢN CẦN NHỚ: 1. Đa giác lồi. 2. Đa giác đều 3. Tổng các góc trong đa giác n cạnh là (n – 2). 1800 4. Số đường chéo của một đa giác n cạnh là 5. Tổng các góc ngoài của một đa giác n cạnh là 3600 6. Trong một đa giác đều, giao điểm O của hai đường phân giác của hai góc là tâm của đa giác đều. Tâm O cách đều các đỉnh, cách đều các cạnh của đa giác đều, có một đường tròn tâm O đi qua các đỉnh của đa giác đều gọi là đường tròn ngoại tiếp đa giác đều. 7. Diện tích tam giác: (a: cạnh đáy; h: chiều cao tương ứng) ( a = AB; b = CA ) 8. Diện tích hình chữ nhật S = ab 9. Diện tích hình vuông S = a2 10. Diện tích hình bình hành S = ah (h là chiều cao kẻ từ một đỉnh đến cạnh a) 11

File đính kèm:

  • docToan Ly Hoa.doc