A.MỤC TIÊU :
1. Kiến thức: -Nắm được đ/n tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
2. Kỹ năng: -Biết vẽ, gọi tên các yếu tố, biết tính sđ các góc của một tứ giác lồi.
-Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
3. Thái độ: -Rèn luyện tư duy sáng tạo, tính cẩn thận và say mê học tập.
B. CHUẨN BỊ :
GV: Các hình vẽ ; 2; 3; 5(a;d) 6(a) 9;11/SGK trên b¶ng phô.
HS: SGK; dụng cụ vẽ hình, ôn tập định lý về tổng 3 góc của tam giác
C . Ho¹t ®éng d¹y häc:
149 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 955 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Thiết kế bài dạy Hình hoc 8 - Tiết 1 đến tiết 69, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn 20/08/2011 Ch¬ng I : TỨ GI¸C
TiÕt 1 TỨ GIÁC
A.MỤC TIÊU :
1. Kiến thức: -Nắm được đ/n tứ giác, tứ giác lồi, tổng các góc của tứ giác lồi.
2. Kỹ năng: -Biết vẽ, gọi tên các yếu tố, biết tính sđ các góc của một tứ giác lồi.
-Biết vận dụng các kiến thức trong bài vào các tình huống thực tiễn đơn giản.
3. Thái độ: -Rèn luyện tư duy sáng tạo, tính cẩn thận và say mê học tập.
B. CHUẨN BỊ :
GV: Các hình vẽ ; 2; 3; 5(a;d) 6(a) 9;11/SGK trên b¶ng phô.
HS: SGK; dụng cụ vẽ hình, ôn tập định lý về tổng 3 góc của tam giác
C . Ho¹t ®éng d¹y häc:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định lớp
Hoạt động 2: Giới thiệu nội dung nghiên cứu trong chương I
GV giới thiệu nội dung cần nghiên cứu trong chương I
Hoạt động 3: Tìm hiểu Định nghĩa:
GV : Treo b¶ng phô (H1) HS quan s¸t.
NhËn xÐt:
Các hình trên đều tạo bởi 4 đoạn thẳng khép kín. Hình 1 là tứ giác, hình 2 không phải là tứ giác.
Tứ giác là hình như thế nào?.
GV nhấn mạnh hai ý:
+ Bốn đoạn thẳng khép kín
+ Bất kỳ hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
GV giới thiệu tên gọi tứ giác, các yếu tố đỉnh, cạnh, góc.
Y/c HS làm
GV giới thiệu : Tứ giác ABCD ở hình 1a gọi là tứ giác lồi.
GV nêu phần chú ý: Khi nói đến tứ giác mà không chú thích gì thêm,ta hiểu đó là tứ giác lồi.
HS vẽ hình 1a vào vở.
Y/c HS làm
Gọi một số HS trả lời
GV chốt lại cho HS : Tứ giác có 4 đỉnh, 4 cạnh, 4 góc, 2 đường chéo.
So sánh các yếu tố của tứ giác với tam giác.
Hoạt động 4: Tìm hiểu Tổng các góc của một tứ giác
Y/c HS làm
Câu a : Tổng 3 góc của tam giác bằng bao nhiêu?
Câu b: GV hướng dẫn : Kẻ đường chéo AC (hoặc BD), áp dụng đ/lý về tổng 3 góc của tam giác.
HS rút ra định lý về tổng các góc của tứ giác.
Hoạt động 5: Củng cố
HS làm tại lớp các BT 1(H5-a; d; H6a) 4a ; 5
Y/c HS trình bày bài giải chi tiết vào vở.
Gọi 2HS lên bảng trình bày lời giải
Hoạt động 6: Hướng dẫn, dặn dò
HD Bài tập 4a
B1: Dựng tam giác ABC biết AB = 1,5 cm ; BC = 2 cm; CA = 3 cm
B2: Dựng tam giác ACD biết AC = 3 cm ; CD = 3,5cm; DA = 3 cm
GV hướng dẫn HS tính tổng các góc ngoài của tam giác.
Học bài theo vở ghi và SGK
Làm các bài tập còn lại trong SGK. Bài 4; 8 ; 10- SBT
Xem bài: Hình thang
Ôn lại tính chất hai đường thẳng song song
HS báo cáo sỹ số
HS ổn định tổ chức
HS tiếp thu và ghi nhớ
HS quan sát
HS ghi nhớ các nhận xét của GV
1. Định nghĩa:
HS rút ra định nghĩa tứ giác
HS ghi nhớ
*VD: Tứ giác ABCD(hay BCDA)
Đỉnh: các điểm A ; B ;C ;D
Cạnh : các đoạn AB ; BC ; CA ; AD.
b) Tứ giác lồi:
HS làm
HS rút ra đ/n tứ giác lồi.
HS làm
Một số HS trả lời
HS ghi nhớ
HS so sánh
2/ Tổng các góc của một tứ giác
HS làm
Câu a : Tổng 3 góc của tam giác bằng 1800
Câu b:
BAC+ B+ BCA = 1800
CAD + D + DCA =1800
(BAC + CAD) + B + D + (BCA + DAC)=3600
Hay A + B + C + D=3600
Định lý : Tổng các góc của một tứ giác bằng 3600
HS trình bày bài giải chi tiết vào vở.
Bài tập 1- Hình 5a
Ta có A + B + C + D=3600
D = x = 3600 - (1100 + 1200 + 800 ) = 500
Bài tập 1- H.6a: x + x + 650 + 950 = 3600
x = (3600 - 650 - 950 ) : 2 = 1000
HS theo dõi để về nhà tiếp tục giải
Ghi nhớ để học tốt bài học
Ghi nhớ các bài tập cần làm
Ghi nhớ để chuẩn bị tốt cho bài học sau
Ngày soạn 20/08/2011
TiÕt 2 HÌNH THANG
MỤC TIÊU :
1. Kiến thức: -Nắm được định nghiã hình thang, hình thang vuông, các yếu tố của hình thang 2. Kỹ năng: -Biết cách chứng minh một tứ giác là hình thang, hình thang vuông.
-Biết vẽ hình thang, hình thang vuông . Biết tính sđ các góc của hình thang , của hình thang vuông.
-Biết sử dụng dụng cụ để kiểm tra 1 tứ giác là hình thang
-Biết linh hoạt khi nhận dạng hình thang ở nhứng vị trí khác nhau ( 2 đáy nằm ngang, hai đáy không nằm ngang) và các dạng đặc biệt (2 cạnh bên song song, 2 đáy bằng nhau)
3. Thái độ: -Rèn luyện tư duy sáng tạo,tính cẩn thận và say mê học tập.
CHUẨN BỊ :
GV: Các hình vẽ 7a; 13;15 , 16 , 17 trên bảng phụ, thước, ê ke
HS: Thước, ê ke
C. ho¹t ®éng d¹y häc
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: ổn định lớp
Kiểm tra sỹ số HS
Ổn định tổ chức lớp
Hoạt động 2: Bài cũ
Nêu định nghĩa về tứ giác, tổng các góc trong một tứ giác?
Hoạt động 3: Tìm hiểu định nghĩa
GV vẽ hình 13
hai cạnh AB và CD của tứ giác ABCD có gì đặc biệt ?
GV : Tứ giác như thế gọi là hình thang
Vậy có thể đ/n hình thang như thế nào?
GV giới thiệu các khái niệm đáy (đáy lớn, đáy nhỏ), cạnh bên, đường cao .
Tứ giác ABCD là hình thang khi nào?
Y/c HS làm
GV Treo b¶ng phô h×nh vẽ 15 a;b;c
Tìm ra các tứ giác là hình thang
Chỉ rõ đâu là đáy, cạnh bên của hình thang?
Y/c HS làm theo đơn vị nhóm
Gọi đại diện hai nhóm trả lời
Từ đó ta có nhận xét gì?
*Nhận xét (SGK).
Hoạt động 4: Tìm hiểu về hình thang vuông
Y/c HS quan sát hình vẽ 18 và tính góc D
Tứ giác ABCD trên H-18 là hình thang vuông
Vậy: thế nào là hình thang vuông
GV: Hình thang vuông có 2 góc vuông
Hoạt động 5:Củng cố, luyện tập
1)Bài tập 6-tr.70-SGK : GV hướng dẫn HS sử dụng thước và êke kiểm tra xem 2 đường thẳng có song song hay không.
2)Bài 9-tr.71-SGK
AB = BC ta suy ra điều gì?
AC là phân giác của góc A ta có điều gì?
Kết hợp các điều trên ta có kết luận gì?
Hoạt động 6: Hướng dẫn, dặn dò
Học bài: Nắm chắc nội dung bài học
Làm BT 7 ;8; 10 trang 71- SGK;17; 18 tr.62-SBT
Xem bài Hình thang cân
HS báo cáo sỹ số
HS Ổn định tổ chức lớp
Một HS lên bảng trình bày
1/ Định nghĩa :
HS vẽ hình vào vở
AB // CD vì hai góc A và D bù nhau.
HS ghi nhớ
Hình thang là tứ giác có 2 cạnh đối song song.
HS ghi nhớ các K/n
Tứ giác ABCD là hình thang
ó AB // CD
Hai đáy : AB và CD
Cạnh bên : AC và BD
Đường cao : AH ( AH ^ CD)
HS làm
HS quan sát các hình vẽ
Hình thang EFGH (G + H = 1800 nên
EH // FG)
Hình thang ABCD ( BC // AD vì hai góc A và B đồng vị bằng nhau)
HS làm ;theo nhóm
a) ΔABC =ΔCDA ( g.c.g) => AB = CD và
AD = BC
b)ΔABC = Δ CDA ( c.g.c) => AD = BC
và DAC = BCA => AD //BC
HS nêu nhận xét
HS đọc nhận xét trong SGK
2. Hình thang vuông
HS quan sát hình vẽ 18 và tính góc D
HS ghi nhớ
Hình thang vuông là hình thang có một góc vuông
HS thực hành .
Các tứ giác là hình thang: ABCD ; MNIK
Bài7: AB = BC
Δ ABC cân BAC= BCA Mà BAC = CAD BCA = CAD BC // AD ABCD là hình thang.
HS ghi nhớ để học tốt bài học
Ghi nhớ các bài tập cần làm ở nhà
Ghi nhớ để chuẩn bị tốt cho tiết học sau
Ngày soạn 27/08/2011
TIẾT 3 : HÌNH THANG CÂN
Môc tiªu:
1. Kiến thức: -Nắm được đ/n; t/c; các dấu hiệu nhận biết hình thang cân
2. Kỹ năng: -Biết vẽ hình thang cân, biết sử dụng đ/n và các t/c của hình thang cân trong tính toán và chứng minh , biết chứng minh 1 tứ giác là hình thang cân.
-Rèn luyện tính chính xác và cách lập luận c/m hình học .
3. Thái độ: -Rèn luyện tư duy sáng tạo, tính cẩn thận và say mê học tập.
CHUẨN BỊ :
Thước chia khoảng, thước đo góc, giấy kẻ ô vuông
Hình vẽ 24; 27 trên bảng phụ
c. Ho¹t ®éng d¹y häc:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
2 HS đồng thời lên bảng
HS1: Giải BT 7- Hình 21a
HS2: Giải BT 8-tr.71-
GV cho HS nhận xét và đánh giá bài làm của 2HS
Hoạt động 3: Tìm hiểu định nghĩa
GV đặt vấn đề : Ngoài dạng đặc biệt của hình thang là hình thang vuông, 1 dạng khác thường gặp là hình thang cân.
GV vẽ một hình thang có 2 góc kề 1 đáy bằng nhau cho HS quan sát
Hình thang vừa vẽ gọi là Hình thang cân
Vậy: thế nào là hình thang cân?
Tứ giác ABCD là hình thang cân (đáy AB và CD ) khi nào?
Chú ý : ( SGK)
Bài tập :
Y/c HS chỉ ra các hình thang cân trong H.24- SGK
tính các góc còn lại
Hai góc đối của hình thang cân A
D’
C
D
có quan hệ gì?
GV nhấn mạnh : Muốn c/m tứ giác là HTC chỉ cần c/m gì?
Hoạt động 4: Tìm hiểu tính chất của hình thangg cân
a) Định lý 1(T/c về cạnh) :
Đo 2 cạnh bên của hình thang cân và rút ra kết luận
GV nêu định lí
GT : ABCD là hình thang cân (AB // CD)
KL: AD = BC
GV hướng dẫn HS c/m
Nếu 2 đường thẳng chứa 2 cạnh bên cắt nhau (tại O) :
B1: c/m OA = OB và OD = OC
Ý
Δ OAB cân Δ ODC cân
B2: Lập luận suy ra AD = BC
Nếu 2 cạnh bên song song thì sao?
GV nêu chú ý : Hình thang có 2 cạnh bên bằng nhau chưa chắc là HTC
b)Định lý 2 ( T/c về đường chéo)
Quan sát hình thang cân, vẽ 2 đường chéo, đo và dự đoán xem 2 đường chéo có bằng nhau hay không ?
Hãy phát biểu thành định lí ?
Trong HTC, 2 đường chéo bằng nhau.
GT: ABCD là hình thang cân (AB//CD)
KL : AC = BD
GV: Để c/m AC = BD cần c/m điều gì ?
Hãy c/m điều đó
GV đặt v/đ: Hình thang có 2 đường chéo bằng nhau có phải hình thang cân hay không?
Hoạt động 5: Tìm hiểu dấu hiệu nhận biết
Y/c HS làm
GV lưu ý cho HS : 2 đoạn AC và BD phải cắt nhau.
Hãy phát biểu kết quả trên thành định lí
Định lý 3 : Hình thang có 2 đường chéo bằng nhau là HTC
Qua định nghĩa và các định lý; muốn c/m một tứ giác là hình thang cân ta làm thế nào ?
Dấu hiệu nhận biết :( SGK)
- §Þnh nghÜa
- §Þnh lý3
Hoạt động 6: Củng cố
Bài tập 11/ 74/SGK: GV chuẩn bị hình vẽ trên lưới ô vuông.
Bài tập 13/ 74/ SGK
Δ ADC = Δ BCD ? vì sao ?
Từ đó suy ra điều gì ?
Hoạt động 7: Hướng dẫn, dặn dò
Học bài: Nắm chắc định nghĩa, tính chất, dấu hiệu nhận biết hình thang cân
Làm các bài tập còn lại trang 75 SGK
Chuẩn bị tốt cho tiết sau luyện tập
HS báo cáo sỹ số
HS ổn định tổ chức
2 HS đồng thời lên bảng giải
HS1: bài 7 – H.21a
HS2: Giải BT 8-tr.71-
HS khác nhận xét
B
A
1/ Định nghĩa
D
C
HS vẽ hình theo GV, quan sát hình vẽ
HS phát biểu thành định nghĩa
Tứ giác ABCD là hình AB//CD
thang cân(đáy AB và CD ) Û
HS đọc phần chú ý A=B (C=D)
HS làm
HS chỉ ra các hình thang cân trong H.24- SGK
HS tính các góc còn lại và trả lời
Hai góc đối của hình thang cân thì bù nhau
Muốn c/m tứ giác là HTC chỉ cần c/m tứ giác là hình thang có 2 góc kề 1 đáy bằng nhau.
2/ Tính chất :
a) Định lý 1(T/c về cạnh) :
HS vẽ hình vào vở
HS đo hai cạnh bên của HTC để phát hiện định lý.
HS ghi GT; KL của định lý.
HS c/m định lí theo hướng dẫn của GV
A
B
C
D
Nếu 2 cạnh bên song song : Hình thang có 2 cạnh bên song song thì 2 cạnh bên bằng nhau (Nhận xét ở bài 2- Hình thang)
HS ghi nhớ
Định lý 2
O
A 2 2 B
1 1
C
D
A
B
CB
DB
HS vẽ, đo và rút ra kết luận
HS: Rút ra định lý về 2 đường chéo của hình thang cân.
Để c/m AC = BD cần c/m Δ ADC = Δ BCD
HS c/m
HS dự đoán
3. Dấu hiệu nhận biết
HS làm BT ( Sử dụng com pa)
Kết quả đo : C = D
Dự đoán: ABCD là hình thang cân
HS phát biểu
C/m®Þnh lý 3(bt18 sgk)
HS nªu 2 dấu hiệu nhận biết hình thang cân.
HS ghi nhớ các dấu hiệu nhận biết hình thang cân
HS thực hiện : Áp dụng định lý Pi-ta-go
ĐS: AD = BC =
Δ ADC = Δ BCD
( c.c.c) C = D Δ ECD cân
EC = ED
A
B
C
D
E
Lại có : AE = AC –EC BE = BD - ED
Suy ra EA = EB
HS ghi nhớ để học tốt bài học
Ghi nhớ các bài tập cần làm
Ghi nhớ nội dung cần chuẩn bị cho tiết sau
Ngày soạn 28/08/2011
TIẾT 4 : LUYỆN TẬP
A. MỤC TIÊU:
1. Kiến thức: -Chứng minh 1 tứ giác là hình thang cân
2. Kỹ năng: -Tính sđ các góc của hình thang cân
-Áp dụng tính chất của hình thang cân để c/m các đoạn thẳng bằng nhau.
3. Thái độ: -Rèn luyện tư duy sáng tạo,tính cẩn thận và say mê học tập.
B. CHUẨN BỊ:
GV: Đọc kỹ SGK, SGV, các đồ dùng dạy học
HS: Làm các bài tập đã ra về nhà, chuẩn bị đầy đủ các đồ dùng học tập
C. HOẠT ĐỘNG DẠY HỌC:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số HS
Ổn định tổ chức lớp
Hoạt động 2: kiểm tra bài cũ
HS1: Phát biểu định nghĩa hình thang cân. Phát biểu dấu hiệu nhận biết hình thang cân.
HS2:Giải BT 15-tr.75-SGK
Hoạt động 3: Giải bài tập
1/ Bài tập 18-tr.75-SGK
GT: AB // CD ; AC = BD
KL: ABCD là hình thang cân
Kẻ đường thẳng BE qua B và song song với AC
Tứ giác ABEC có gì đặc biệt?
Suy ra 2 cạnh bên có độ dài quan hệ với nhau như thế nào ?
Muốn c/m Δ BDE cân ta làm thế nào?
Hãy c/m BD = BE
Δ ACD = Δ BDC ?
Từ AC // BE suy ra điều gì?
Δ BDE cân tại B nên ta có cặp góc nào bằng nhau?
Vậy Δ ACD = Δ BDC theo t/h nào?
Để C/m ABCD là hình thang cân ta cần c/m gì?
Hãy c/m điều đó
2/ Bài tập 33 trang 64-SBT
GT: ABCD là hình thang cân ; D1=D2
BD ^ BC ; BC = 3 cm
KL : Tính chu vi hình thang ABCD
GV hướng dẫn HS vẽ hình :
Vẽ ΔBDC vuông có BC = 3 cm
Vẽ BA = 3 cm và BA // DC
AB // CD nên ta có cặp góc nào bằng nhau?
Mà BDC=ADC ( GT) Nên suy ra điều gì?
ΔBCD vuông ta có kl gì?
Mà C=ADC=2D2 Suy ra ?
ΔBCD vuông có D2= 300 nên DC= ? BC
Chu vi hình thang ABCD tính như thế nào?
Hoạt động 4: Hướng dẫn, dặn dò
Hướng dẫn bài 17: Kẻ AH CD, BKCD, C/ DH = CK
Làm bài tập: bài 16 – tr 75. SGK, bài 30 ; 32-tr.63-SBT
Chuẩn bị tiết sau:
Đọc trước bài: Đường trung bình của tam giác…
HS báo cáo sỹ số
HS ổn định tổ chức
2HS lên bảng trình bày
HS đọc kỹ đề và vẽ hình , ghi GT ,KL
a)Chứng minh
Δ BDE cân
A
B
C
D
E
Hình thang ABEC ( AB//CE) có AC // BE nên AC = BE
Mà AC = BD nên BD = BE => Δ BDE cân
b) Δ ACD = Δ BDC
AC // BE suy ra ACD = BEC
Δ BDE cân tại B nên BDE = BEC
Vậy BDE = ACD
Δ ACD và Δ BDC có BDE=ACD ; AC = BD ; cạnh DC chung nên Δ ACD = Δ BDC
c)C/m ABCD là hình thang cân ta cần C/m
ADC=BCD
Δ ACD = Δ BDC suy ra ADC=BCD
Lại có AB // CD nên ABCD là hình thang cân
1
2
1
A
GV
B
GV
C
GV
D
GV
HS ghi Gt, Kl
HS vẽ hình :
Vẽ ΔBDC vuông có BC = 3 cm
Vẽ BA = 3 cm và BA // DC
AB // CD nên ABC=BDC( so le trong)
Mà BDC=ADC ( GT)
Nên ADC=CDB suy ra ΔABD cân
=> AB = AD = BC = 3cm
ΔBCD vuông => C+ D= 900
Mà C=ADC=2D23D2 = 900 D2= 300
ΔBCD vuông có D2= 300
nên DC= 2 BC = 6cm
Chu vi hình thang ABCD là
3 + 3 + 3 + 6 = 15 cm
HS theo dõi GV hướng dẫn để về nhà tiếp tục giải
Ghi nhớ các bài tập cần làm ở nhà và bài học cần chuẩn bị cho tiết học sau
Ngày soạn 02/09/2011
TIẾT 5 : ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC
A. MỤC TIÊU :
1. Kiến thức: -Nắm được định nghĩa và các định lý 1;2 về đường trung bình của tam giác.
2. Kỹ năng: -Biết vận dụng các định lý để tính độ dài, chứng minh 2 đoạn thẳng bằng nhau, hai đường thẳng song song.
Rèn luyện cách lập luận trong chứng minh định lý và vận dụng định lý đã học vào các bài toán thực tế.
3. Thái độ: -Rèn luyện tư duy sáng tạo, tính cẩn thận và say mê học tập.
B. CHUẨN BỊ:
GV: Đọc kỹ SGK, SGV, dụng cụ dạy học
HS: Đọc trước nội dung bài học, đồ dùng học tập
C . HOẠT ĐỘNG DẠY HỌC:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
* Phát biểu tính chất hình thang cân.
* Giải bài tập 30 trang 63- SBT
GV đặt vấn đề vào bài
Tìm hiểu về đường trung bình của tam giác
Hoạt động 3: Tìm hiểu định lí 1
Y/c HS làm :
Cho Δ ABC ; DE đi qua trung điểm cạnh AB(thứ nhất), song song với cạnh BC (thứ hai)
Phát biểu dự đoán trên thành 1 định lý
GV gới thiệu định lý 1
GV hướng dẫn HS c/m định lý
Để c/m : AE = EC ta có thể c/m hai tam giác bằng nhau.
GV: Ta sẽ tạo 1 tam giác bằng Δ ADE bằng cách nào?
Ta cần c/m Δ ADE bằng tam giác nào?
Hãy c/m Δ ADE = Δ ECF ?
GV: Đoạn DE gọi là đường trung bình của Δ ABC
Vậy thế nào là đường trung bình của tam giác?
Căn cứ vào đ/n , xem 1 tam giác có mấy đường trung bình ? Các đường trung bình ấy có cắt nhau tại 1 điểm hay không ?
Y/c HS làm
Cho HS vẽ hình, đo, so sánh và trả lời
Từ kết quả dự đoán tính chất đường trung bình của tam giác.
Gọi HS đọc nội dung định lí 2 – SGK
GV vẽ hình,ghi GT, KL của định lí 2 lên bảng
GV cùng HS c/m định lí 2
Y/c HS làm
Gọi 1HS trả lời kết quả
Hoạt động 4: Củng cố, luyện tập
Bài học hôm nay cần nắm chắc kiến thức nào?
1)Bài tập 20 tr79-SGK - GV đưa hình vẽ 41 trên bảng phụ.
Cho HS tính và trả lời
2) Bài tập 21 tr79 - SGK - GV đưa hình vẽ trên bảng phụ, cho HS thực hiện và trả lời
Hoạt động 5: Dặn dò
Làm BT 22 – Tr 80.SGK
Học bài : học thuộc đ/n, tc trong bài
Xem bài : Đường trung bình của hình thang
HS lên bảng phát biểu và giải bài tập
1/ Đường trung bình của tam giác
HS tiếp thu vấn đề cần nghiên cứu
a) định lí 1
HS làm :
1HS trả lời dự đoán
Dự đoán E là trung điểm của cạnh AC (thứ ba)
HS phát biểu
HS ghi GT; KL của định lý 1
GT Δ ABC ;
DA = DB ; DE//BC
KL AE = EC
HS suy nghĩ và
trả lời :Kẻ EF // AB
A
B
C
D
E
F
C/m: Δ ADE =ΔECF
AD = EF ( cùng bằng BD ); A= FEC (đồng vị); ADE=EFC ( cùng bằng B)
Vậy : Δ ADE = Δ ECF => AE = CE
HS tiếp cận k/n
HS phát biểu
1HS đọc đ/n trong SGK
* Định nghĩa : ( Học SGK)
D là trung điểm AB ; E là trung điểm AC DE là đường trung bình của ΔABC
HS vẽ hình và trả lời
Đường trung bình của tam giác không cắt nhau tại 1 điểm.
HS làm : Vẽ hình, kiểm tra và trả lời kết quả: ADE=B ; DE = BC
HS dựa trên kết quả của để phát biểu thành tính chất
A
B
C
D
E
F
HS đọc nội dung định lí 2 SGK
b) định lí 2 (SGK)
GT: Δ ABC;
AD = BD; AE = EC
KL: DE // BC ;
DE = BC
HS làm
BC = 2 DE = 2.50 = 100 (m)
HS trả lời để ghi nhớ nội dung chính của bài
C=AKI IK // BC .Lại có
KA = KC nên IA = IB = 10 cm x =10cm
HS quan sát, thực hiện rồi trả lời
CD là đường trung bình của tam giác OAB => AB = 2 CD = 2.3 = 6 cm
HS ghi nhớ bài tập cần làm
Ghi nhớ để học tốt bài học
Ghi nhớ bài cần chuẩn bị cho tiết học sau
Ngày soạn 10/09/2011
TIẾT 6 : ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG
A.MỤC TIÊU :
1. Kiến thức: -Nắm được định nghĩa và các định lý 3 ;4 về đường trung bình của hình thang
2. Kỹ năng: Biết vận dụng định lý để tính độ dài, chứng minh 2 đoạn thẳng bằng nhau.
- Rèn luyện cách lập luận trong chứng minh định lý và vận dụng định lý để làm bài tập.
3. Thái độ: -Rèn luyện tư duy sáng tạo, tính cẩn thận và say mê học tập.
B.CHUẨN BỊ :
Hình 43 ; 44 ; 37; 40; 44 trên bảng phụ
C. HOẠT ĐỘNG DẠY HỌC:
Hoạt động 1: Ổn định lớp
Kiểm tra sỹ số lớp
Ổn định tổ chức lớp
Hoạt động 2: Kiểm tra bài cũ
A
B
C
D
E
I
M
Phát biểu đ/n và tính chất đường trung bình của tam giác.
Giải bài tập 22-tr.80.SGK - (GV chuẩn bị hình vẽ trên bảng phụ )
Hoạt động 3:
Tìm hiểu Đường trung bình của hình thang
Y/c HS làm GV đưa hình vẽ 37 trên bảng phụ
Gọi HS lên bảng thực hiện và trả lời
Từ đó ta có kết luận gì?
Hãy c/m bài toán trong
Áp dụng định lí nào để c/m I là trung điểm của AC
C/m F là trung điểm của BC?
Hãy phát biểu kết luận của thành một định lí
GV giới thiệu định lí 3
Hãy vẽ hình và ghi GT, KL của định lí
GV: Ta gọi EF là đường rtung bình của hình thang ABCD
Đường trung bình của hình thang là gì?
Hình thang có mấy đường trung bình?
Từ đ/n đường trung bình của hình thang, t/c đường trung bình của tam giác, hãy dự đoán t/c đường trung bình của hình thang ?
Hãy c/m bài toán ( GV đọc đề toán)
Hướng dẫn HS ghi TG, KL của bài toán
GV gợi ý HS chừng minh: Để c/m EF // DC ta tạo ra một tam giác có E ; F là trung điểm 2 cạnh và DC nằm trên cạnh thứ ba. Đó là ΔADK (K là giao điểm của AF và DC)
B1: C/m ΔABF = ΔKCF?
B2: Lập luận để suy ra EF // DC và
EF = (AB + DC)
Dự đoán EF bằng bao nhiêu phần DK
Để c/m EF = ( AB + DC) nên ta sẽ c/m 2 đoạn nào bằng nhau?
Hãy c/m AB = CK
EF có tính chất gì? Từ đó suy ra điều gì?
Từ bài toán trên. Hãy phát biểu thành một kết luận dưới dạng một định lí
GV giới thiệu và nhấn mạnh định lí
Y/c HS làm
GV đưa hình vẽ 40 trên bảng .
Hướng dẫn :
B1: Chứng tỏ BE là đường trung bình của hình
A
B
C
24
D
E
H
32
x
thang ADHC
B2:Tính x
Hoạt động 4: Củng cố, Luyện tập
Bài học hôm nay cần nắm vững kiến thức gì?
Làm bài tập 24- Tr 80. SGK
A
B
C
M
H
K
x
y
12
20
Kẻ AH; CM ; BK vuông góc với xy
Hình thang
ABCD có
AC = CB;
CM //AH //BK. Nên suy ra điều gì?
Hãy C/m điều đó
Hoạt động 5: Hướng dẫn, dặn dò
Học bài: Nắm chắc kiến thức bài học: Các định lí, định nghĩa đã học về đường trung bình của Tam giác, Hình thang
Làm BT 23; 25 ; 26 trang 80 SGK
Chuẩn bị cho tiết sau: Chuẩn bị đồ dùng, kiến thức bài học để tiết sau luyện tập
HS báo cáo sỹ số
HS ổn định tổ chức
HS lên bảng trả lời và giải bài tập
EM là đường trung bình của ΔBDC nên
EM // DC
DE = DA ; DI // EM nên IA = IM
2/ Đường trung bình của hình thang
HS lên bảng thực hiện và trả lời
IA = IC, FB = FC
HS phát biểu
HS: áp dụng đl 1- đường trung bình của tam giác: Vì EI // CD mà EA = ED nên IA = IC
FI // AB Mà IA = IC nên fb = fc hay F là trung điểm BC
HS phát biểu
a) Định lý 3 ( Học SGK)
HS vẽ hình, ghi GT ; KL của định lý .
HS phát biểu định nghĩa
b) Định nghĩa : Đường trung bình của hình thang là đoạn thẳng nối trung điểm 2 cạnh bên của hình thang.
Hình thang có một đường trung bình
HS dự đoán về tính chất đường trung bình của hình thang
HS ghi đề, viết GT, KL và vẽ hình
EF = DK ;
AB = CK
ΔABF = Δ KCF (; BF = CF ;
B = KCF ) => AB = CK và AF = FK
EF là đường trung bình của tam giác ADK suy ra EF // DC // AB và
EF = DK = (DC + CK ) = ( DC + AB )
HS phát biểu
c) Định lý 4 ( t/c đường trung bình của hình thang)
Đường TB của hình thang thì song song với 2 đáy và bằng nửa tổng 2 đáy.
HS làm
HS thực hiện:
BE ^ DH ; AD ^ DH; CH ^ DH suy ra
BE // AD // HC
Hình thang ADHC có BE // AD ; BA=BC nên ED = EH
EB là đường trung bình của hình thang ADHC nên EB = ( AD + HC)
32 = ( 24+x) x = 40 m
HS phát biểu để củng cố bài học
HS tiếp cận đề bài
HS C/m:
Kẻ AH; CM ; BK vuông góc với xy.
Hình thang ABKH có AC = CB;
CM //AH // BK
Nên MH = MK và CM là đường trung bình
CM = ½( AH + BK) = ½( 12 + 20) = 16 (cm)
HS ghi nhớ để học tốt kiến thức bài học
Ghi nhớ các bài tập cần làm
Ghi nhớ công việc cần chuẩn bị cho tiết sau
Ngày soạn 11/09/2011
TIẾT 7: LUYỆN TẬP
A. MỤC TIÊU:
- Kiến thức: Củng cố các kiến thức về đường trung bình của tam giác.
- Kĩ năng: Rèn kĩ năng vận dụng tính chất đường trung bình của tam giác để các bài tập hình học có liên quan hoặc chứng minh hình học.
- Thái độ: Thông qua các dạng bài tập khác nhau giúp học sinh vận dụng linh hoạt các tính chất đường trung bình của tam giác, nhờ đó mà học sinh phát triển tư duy hình học tốt hơn, học sinh yêu thích môn hình học hơn.
B. CHUẨN BỊ:
GV: Giáo án, thước …
HS: Dụng cụ học tập.
C. HOẠT ĐỘNG DẠY HỌC:
Ổn định:
Kiểm tra bài cũ: ? Phat biểu định nghia và tính chất đường trung bình của tam giác
Bài mới:
Hoạt động của GV
Hoạt động của HS
Hoạt động 1: làm bài tập 1
Hs quan sát đọc đề suy nghĩ tìm cách làm.
Gọi 1 hs lên bảng vẽ hình và ghi GT, KL.
Gọi 1 hs nêu cách làm
- 1 HS trình trên bảng
Gọi hs khác nhận xét bổ sung
Gv uốn nắn cách làm
Giáo viên xuống lớp kiểm tra xem xét.
Gọi 1 hs lên bảng trình bày lời giải
Gọi hs khác nhận
xét bổ sung
Gv uốn nắn
Bài tập 1:
Cho DABC nhọn, đường cao AH. Gọi M,N,P lần lượt là trung điểm các cạnh BC, AB, AC. Chứng minh rằng MHNP là hình thang cân.
HS: ghi GT, KL
Chứng minh:
Vì N,P là trung điểm của AB và AC (gt)
ÞNP là đường trung bình của DABC
Þ NP // BC hay HM // NP
Þ MHNP là hình thang (1)
Vì AH ^ BC (gt) mà NP // BC (cmtrên)
Þ AH ^ NP (2)
Trong D ABH có
N là trung điểm của AB (gt)
NP //BC (cmtrên) hay NP // BH
Þ NP phải đi qua trung điểm của AH (3)
Từ (2) và (3) Þ NP là đường trung trực của AH Þ NA = NH Þ DNAH cân tại N
Þ Đường trung trực NP đồng thời là đường phân giác Þ N1=N2 (4)
Mà M,P là trung điểm của BC và AC (gt)
Þ MP là đường trung bình của DABC
Þ MP // AB Þ N1 = P1 (so le trong) (5)
Từ (4) và (5) Þ N2 = P1 (6)
Từ (1) và (6) Þ MHNP là hình thang cân
Hoạt động 2: BT 2
Gọi 1 hs lên bảng vẽ hình và ghi GT và KL.
Y/C HS thảo luận theo nhóm tìm cách c/m
Giáo viên xuống lớp kiểm tra xem xét.
Các nhóm trình bày c/m
Gọi hs khác nhận
xét bổ sung
Gv uốn nắn
Phần b) GV cho HS hoạt động như trên
Bài tập 2:
Cho DABC có AC = 8cm, BC = 6cm. Gọi M, N lần lượt trung điểm các cạnh AB, AC. Trên cạnh AC lấy điểm E sao cho CE = 1cm.
Chứng minh: NME=NEM
Chứng minh: . C = 2NME
Chứng minh:
Vì M,N là trung điểm của AB và AC (gt)
Þ MN là đường trung bình của DABC
Þ MN = BC = .6 = 3 (cm)
Vì N là trung điểm của AC (gt)
Þ NC = AC = .8 = 4 (cm)
Mà NE = NC – CE
Þ NE = 4 – 1 = 3 (cm) Þ MN = NE (= 3cm)
Þ DMNE cân tại N Þ NME=NEM
b)Vì NME=NEM
mà N1 =NME+NEM (góc ngoài DNME)
Þ N1 =NME+NEM =NME+NME=2NME
Vì MN // BC (cmtrên)
Þ C1 = N1( đồng vị) Þ C =2NME
4. Hướng dẫn về nhà:
- Nắm chắc định nghĩa và tính chất đường trung bình của tam giác.
- Làm bài tập 34,38,39 (SBT-84)
Ngµy so¹n 17/09/2011
TiÕt 8: LUYỆN TẬP (tt)
A. MỤC TIÊU:
- Kiến thức: Củng cố các kiến thức về đường trung bình của hình thang, của tam giác
- Kỹ năng: Rèn kĩ năng vận dụng tính chất đường trung bình của tam giác, đường trung bình của hình thang để các bài tập hình học có liên quan hoặc chứng minh hình học.
- Thái độ: Học sinh phát
File đính kèm:
- GA HINH HOC 8 DAY DU.doc