1.1. Kiến thức: Nắm được khái niệm về hàm số, biến số, các kí hiệu. Nắm được đồ thị hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng tọa độ. Bước đầu nắm được khái niệm hàm số đồng biến trên R, nghịch biến trên R.
1.2. Kĩ năng: Biết cách tính các giá trị của hàm số khi cho trước biến số; biết biểu diễn các cặp số (x;y) trên mặt phẳng tọa độ, biết vẽ đồ thị hàm số y = ax.
1.3. Thái độ: HS thấy tuy toán học là một môn khoa học trừu tượng nhưng các vấn đề trong toán học nói chung cũng như vấn đề hàm số nói riêng lại thường xuất phát từ việc nghiên cứu các bài toán thực tế.
6 trang |
Chia sẻ: quoctuanphan | Lượt xem: 1066 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Bài soạn Đại số 9 Tiết 19 - Vũ Mạnh Tiến, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
NS: 06/11/2009
NG: 09/11/2007
Tiết 19
Chương II. Hàm số bậc nhất
Bài 1.
nhắc lại và bổ sung
các khái niệm về hàm số
1. Mục tiêu
1.1. Kiến thức: Nắm được khái niệm về hàm số, biến số, các kí hiệu. Nắm được đồ thị hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng tọa độ. Bước đầu nắm được khái niệm hàm số đồng biến trên R, nghịch biến trên R.
1.2. Kĩ năng: Biết cách tính các giá trị của hàm số khi cho trước biến số; biết biểu diễn các cặp số (x;y) trên mặt phẳng tọa độ, biết vẽ đồ thị hàm số y = ax.
1.3. Thái độ: HS thấy tuy toán học là một môn khoa học trừu tượng nhưng các vấn đề trong toán học nói chung cũng như vấn đề hàm số nói riêng lại thường xuất phát từ việc nghiên cứu các bài toán thực tế.
2. Chuẩn bị của GV - HS
GV: - Đồ dùng: bảng phụ ghi ?3, mặt phẳng tọa độ xOy, máy tính bỏ túi.
- Tài liệu: SGK, SBT, SGV
HS: - Ôn tập hàm số đã học lơp 7.
3. Phương pháp:
- Các phương pháp: Vấn đáp, phát hiện và giải quyết vấn đề, giảng giải, phân tích, tổng hợp.
- HS tiếp cận kiến thức mới thông qua kiến thức cũ đã học và thông qua việc lập bảng.
4. Tiến trình dạy học
4.1. ổn định tổ chức
4.2. Kiểm tra bài cũ
Kết hợp cùng hoạt động 1.
4.3. Bài mới
*Hoạt động 1:
? Khi nào đại lượng y được gọi là hàm số của đại lượng thay đổi x ?
HS: Nếu ... biến số
? Hàm số có thể được cho bằng những cách nào?
HS: bằng bảng hoặc bằng công thức
GV yêu cầu HS nghiên cứu ví dụ 1a,b
GV đưa VD1 lên bảng phụ giới thiệu lại
? y là hàm số của x được cho bằng bảng. Em hãy giải thích vì sao y là hàm số của x ?
HS: Vì đại lượng y phụ thuộc vào đại lượng x, sao cho ứng với mỗi giá trị của x ta luôn xác định chỉ một giá trị tương ứng của y.
GV đưa ra bảng phụ sau:
? Trong bảng trên có ghi sẵn giá trị tương ứng của x và y. Bảng này có xác định y là hàm số của x không? Vì sao?
HS: không xác định y là hàm số của x vì ứng với giá trị x = 3 ta có 2 giá trị của y là 6 và 4.
GV: Qua ví dụ trên ta thấy hàm số có thể được cho bằng bảng nhưng ngược lại không phải bảng nào cũng cho ta một hàm số. Nếu hàm số được cho bằng công thức y = f(x) ta hiểu rằng biến số x chỉ lấy những giá trị mà tại đó f(x) xác định.
ở ví dụ 1b, biểu thức 2x xác định với mọi giá trị của x, nên hàm số y = 2x, biến số x có thể lấy các giá trị tùy ý.
HS xét các công thức còn lại.
GV: công thức y = 2x ta còn có thể viết y = f(x) = 2x
? Em hiểu thế nào về kí hiệu f(0), f(1),...f(a)?
HS: là giá trị hàm số tại x = 0; 1; ...; a
GV yêu cầu HS làm ?1
HS làm ?1
? Thế nào là hàm hằng? Cho ví dụ?
HS: ....
GV gợi ý: công thức y = 0x + 2 có đặc điểm gì?
HS: Khi x thay đổi mà y luôn nhận giá trị không đổi y = 2.
1. Khái niệm hàm số
* K/n:
SGK
* Cách cho hàm số : SGK
Ví dụ 1:
a)
x
1
2
3
4
y
6
4
2
1
b) y = 2x
y = 2x + 3
x
3
4
3
5
8
y
6
8
4
8
16
Nếu y = f(x): biến x chỉ lấy những giá trị tại đó f(x) xác định
f(0), f(1),... f(a) là các giá trị của hàm số tại
x = 0; 1; ...; a.
?1: f(0) = 5; f(1) = ; f(2) = 6
f(3) = ; f(-2) = 4 ; f(-10) = 0
* Hàm hằng:
SGK
*Hoạt động 2:
GV yêu cầu HS làm ?2. Kẽ sẵn 2 hệ tọa độ Oxy lên bảng có lưới ô vuông.
HS: hai HS đồng thời lên bảng
Một HS làm câu a
Một HS làm câu b.
HS dưới lớp làm bài vào vở.
GV và HS cùng kiểm tra bài làm của 2 học sinh trên bảng
? Thế nào là đồ thị của hàm số y = f(x)?
HS: Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng tọa độ được gọi là đồ thị của hàm số y = f(x)
? Hãy nhận xét các cặp số của ?2a là của hàm số nào trong các ví dụ trên?
HS: của VD1a, được cho bằng bảng
? Đồ thị hàm số y = 2x là gì?
HS: là đường thẳng OA trong mặt phẳng tọa độ Oxy.
2. Đồ thị hàm số
A
B
O
4
2
1
4
6
3
1
C
D
E
x
F
2
y
Với x = 1 -> y = 2 -> A(1;2) thuộc đồ thị hàm số y = 2x
x
2
1
y
O
A
*Hoạt động 3:
GV yêu cầu HS làm ?3
HS dùng bút chì điền vào bảng ở trang 43SGK
GV đưa ra đáp án trên bảng phụ để HS đối chiếu, sửa chữa.
3. Hàm số đồng biến, nghịch biến
x
-2,5
-2
-1,5
-1
-0,5
0
0,5
1
1,5
y=2x+1
-4
-3
-2
-1
0
1
2
3
4
y=-2x+1
6
5
4
3
2
1
0
-1
-2
? Xét hàm số y = 2x + 1. Biểu thức
2x + 1 xác định với những giá trị nào của x?
HS: Biểu thức 2x + 1 các định với mọi giá trị
? Hãy nhận xét: Khi x tăng dần, các giá trị tương ứng của y = 2x + 1 thế nào?
HS: Khi x tăng dần thì các giá trị tương ứng của y = 2x + 1 cũng tăng
GV giới thiệu: Hàm số y = 2x + 1 đồng biến trên tập R.
- Xét hàm số y = -2x + 1 tương tự
HS: + Biểu thức -2x + 1 các định với
+ Khi x tăng dần thì các giá trị tương ứng của y = -2x + 1 giảm dần
GV giới thiệu: Hàm số y = -2x + 1 nghịch biến trên tập R
HS đọc phần “Một cách tổng quát”
Một HS khác đọc lại
4.4. Củng cố:
Bài 1/sgk-44. HS hoạt động theo nhóm
GV: Đưa bài của các nhóm lên bảng rồi các nhóm tự nhận xét lấn nhau.
và sửa chữa (nếu có)
Bài 2/sgk-44.
HS Hoạt động nhóm làm bài phần a.
sau đó nhận xét kết quả giữa các nhóm.
HS: nêu kết luận phần b? vì sao?
a) Xét hàm số y = 2x + 1
* 2x + 1 xác định
* Khi x tăng => y tăng
=> y = 2x + 1 là hàm số đồng biến trên R
b) Xét hàm số y = -2x + 1
* -2x + 1 xác định
* Khi x tăng => y giảm
=> y = -2x + 1 là hàm số nghịch biến trên R
* Tổng quát: SGK/44
4. Luyện tâp:
Bài 1/sgk-44
c) Khi biến x lấy 1 giá trị thì giá trị của số hàm số lớn hơn giá trị của hàm số
Bài 2/sgk-45
x
-2,5
-2
-1,5
-1
-0,5
0
0,5
1
1,5
2
2,5
4,25
4
3,75
3,5
3,25
3
2,75
2,5
2,25
2
1,75
b) hàm số đã cho nghịch đảo biến vì khi x nhận g.trị tăng thì giá trị trương ứng của hàm số lại giảm đi
4.5. Hướng dẫn về nhà
- Nắm vững các khái niệm hàm số, đồ thị hàm số, hàm số đồng biến, nghịch biến
- Làm bài tập 1, 2, 3 (44-SGK)
1, 3 (56-SBT)
5. Rút kinh nghiệm
File đính kèm:
- t19.doc