Đề tài sư phạm: Một số phương pháp giải phương trình nghiệm nguyên

Trong quá trình học toán ở trường THCS học sinh cần biết cách tổ chức công việc của mình một cách sáng tạo. Người thầy cần rèn luyện cho học sinh kỹ năng, độc lập suy nghĩ một cách sâu sắc, sáng tạo. Vì vậy đòi hỏi người thầy một sự lao động sáng tạo biết tìm tòi ra những phương pháp để dạy cho học sinh trau dồi tư duy logic giải các bài toán.

Là một giáo viên dạy toán ở trường THCS trực tiếp bồi dưỡng đội tuyển học sinh giỏi nhiều năm tôi nhận thấy việc giải các bài toán ở chương trình THCS không chỉ đơn giản là đảm bảo kiến thức trong SGK, đó mới chỉ là những điều kiện cần nhưng chưa đủ. Muốn giỏi toán cần phải luyện tập nhiều thông qua việc giải các bài toán đa dạng, giải các bài toán một cách khoa học, kiên nhẫn, tỉ mỉ, để tự tìm ra đáp số của chúng.

 

doc34 trang | Chia sẻ: quoctuanphan | Lượt xem: 898 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Đề tài sư phạm: Một số phương pháp giải phương trình nghiệm nguyên, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
A - Phần mở đầu I- Đặt vấn đề Trong quá trình học toán ở trường THCS học sinh cần biết cách tổ chức công việc của mình một cách sáng tạo. Người thầy cần rèn luyện cho học sinh kỹ năng, độc lập suy nghĩ một cách sâu sắc, sáng tạo. Vì vậy đòi hỏi người thầy một sự lao động sáng tạo biết tìm tòi ra những phương pháp để dạy cho học sinh trau dồi tư duy logic giải các bài toán. Là một giáo viên dạy toán ở trường THCS trực tiếp bồi dưỡng đội tuyển học sinh giỏi nhiều năm tôi nhận thấy việc giải các bài toán ở chương trình THCS không chỉ đơn giản là đảm bảo kiến thức trong SGK, đó mới chỉ là những điều kiện cần nhưng chưa đủ. Muốn giỏi toán cần phải luyện tập nhiều thông qua việc giải các bài toán đa dạng, giải các bài toán một cách khoa học, kiên nhẫn, tỉ mỉ, để tự tìm ra đáp số của chúng. Muốn vậy người thầy phải biết vận dụng linh hoạt kiến thức trong nhiều tình huống khác nhauđể tạo hứng thú cho học sinh. Một bài toán có thể có nhiều cách giải, mỗi bài toán thường nằm trong mỗi dạng toán khác nhau nó đòi hỏi phải biết vận dụng kiến thức trong nhiều lĩnh vực nhiều mặt một cách sáng tạo vì vậy học sinh phải biết sử dụng phương pháp nào cho phù hợp. Các dạng toán về số học ở chương trình THCS thật đa dạng phong phú như: Toán về chia hết, phép chia có dư, số nguyên tố, số chính phương, phương trình nghiệm nguyên……. Đây là một dạng toán có trong SGK lớp 9 nhưng chưa đưa ra phương pháp giải chung. Hơn nữa phương trình nghiệm nguyên có rất nhiều trong các đề thi:Tốt nghiệp THCS ;Trong các đề thi học sinh giỏi huyên, học sinh giỏi tỉnh …. Song khi giải các bài toán này không ít khó khăn phức tạp. Từ thực tiễn giảng dạy tôi thấy học sinh hay bế tắc, lúng túng về cách xác định dạng toán và chưa có nhiều phương pháp giải hay. Từ những thuận lợi, khó khăn và yêu cầu thực tiễn giảng dạy.Tôi chọn đề tài: “Rèn luyện tư duy sáng tạo qua một số dạng toán phương trình nghiệm nguyên” Trong quá trình viết đề tài do điều kiện và kinh nghiệm không tránh khỏi khiếm khuyết. Rất mong được sự đóng góp, chỉ đạo của thầy cô giáo và các bạn đồng nghiệp. II. Điều tra thực trạng trước khi nghiên cứu. Để đánh giá được khả năng của các em đối với dạng toán trên và có phương án tối ưu truyền đạt tới học sinh, tôi đã ra một đề toán cho 10 em học sinh trong đội tuyển của trường như sau: Bài 1: ( 6 đ ) a)Tìm x, y є Z biết x – y + 2xy = 6 b) Giải phương trình nghiệm nguyên: 5x – 7y = 3 Bài 2: (4 đ) Tìm nghiệm nguyên dương của phương trình : 1 + x + x2 + x3 = 2y Kết quả thu được như sau: Dưới điểm 5 Điểm 5 - 7 Điểm 8 - 10 Điểm 5 - 10 SL % SL % SL % SL % 6 60 4 40 0 0 4 40 Qua việc kiểm tra đánh giá tôi thấy học sinh không có biện pháp giải phương trình nghiệm nguyên đạt hiệu quả. Lời giải thường dài dòng, không chính xác, đôi khi còn ngộ nhận . Cũng với bài toán trên nếu học sinh được trang bị các phương pháp” Giải phương trình nghiệm nguyên “thì chắc chắn sẽ có hiệu quả cao hơn. III-Mục đích - Đề tài nhằm rèn luyện cho học sinh tư duy sáng tạo khi học và giải toán. - Biết cách định hướng và giải bài tập ngắn gọn. - Phát huy trí lực của học sinh tìm nhiều cách giải hay phát triển bài toán mới. - Giúp học sinh tự tin khi giải toán hoặc trong thi cử. IV-Phạm vi áp dụng: - áp dụng vào việc giảng dạy các chuyên đề trong trường học hoặc bồi dưỡng đội tuyển học sinh giỏi Toán lớp 9, ôn tập cho học sinh chuẩn bị thi vào các lớp chọn, lớp chuyên PTTH. - Thời gian nghiên cứu có hạn mặc dù được sự góp ý chân thành của nhiều giáo viên có chuyên môn cao, song vẫn còn nhiều điều bỏ ngỏ để tiếp tục khai thác và đi sâu hết dạng toán này. B- Nội dung Phương trình nghiệm nguyên rất đa dạng và phong phú nó có thể là phương trình một ẩn, nhiều ẩn. Nó có thể là phương trình bậc nhất hoặc bậc cao. Không có cách giải chung cho mọi phương trình, để giải các phương trình đó thường dựa vào cách giải một số phương trình cơ bản và một số phương pháp giải như sau: Chương I - Các dạng phương trình cơ bản I-Phương trình nghiệm nguyên dạng: ax + by = c (1) với a, b, c є Z 1.Các định lí: a. Định lí 1: Điều kiện cần và đủ để phương trình ax + by = c (trong đó a,b,c là các số nguyên khác 0 ) có nghiệm nguyên (a,b) là ước của c. b.Định lí 2: Nếu (x0, y0) là một nghiệm nguyên của phương trình ax + by = c thì nó có vô số nghiệm nguyên và nghiệm nguyên (x,y) được cho bởi công thức: Với t є Z, d = (a,b) 2.Cách giải: a.Tiến hành qua 5 bước sau: (cách giải chung) Bước 1: Tìm d = (a,b) Khi đó ax + by = c Û a1x + b1y = c1 Với a = da1; b = db1; c = dc1; (a1; b1) = 1 Bước 2: Viết thuật toán Ơclit cho 2 số a1 và b1 Giả sử : > Ta có a1 = q0 + r1 b1 = r1q1 + r2 r1 = r2q2 +r3 ……………… rn-2 = rn-1 + rn Với rn = 1 Bước 3: Tính a0 + = Bước 4: Lấy nghiệm riêng (x0’; y0’) của phương trình a1x + b1y = 1 sao cho : x0’ = m x0’ = n hoặc y0’ = n y0’ = m Xác định dấu bằng cách thử trực tiếp được (x0’, y0’) Bước 5: x0 = c1 x0’; y0 = c1y0’ là nghiệm riêng của phương trình a1x + b1y = c1 ị nghiệm tổng quát của phương trình là: x = x0 + b1 t y = y0 –a1t (với t є Z ) Ví dụ 1: Giải phương trình nghiệm nguyên 5x – 7y = 3 Hướng dẫn: Ta nhận thấy (5, 7) = (7, 3) = 1 . Vậy phương trình có nghiệm nguyên Để giải ta tiến hành các bước: - Viết thuật toán Ơclit cho 2 số 5 và 7 7 = 5.1 + 2 ị = 1 + = 5 = 2.2 + 1 - Tìm nghiệm riêng của phương trình 5x – 7y = 1 (x0’, y0’) = (3, 2) - Tìm nghiệm riêng của phương trình 5x – 7y = 3 là (x0, y0) = (9, 6) ị nghiệm tổng quát của phương trình là: x = 9 – 7t hay x = 7t + 2 y = 6 – 5t y = 5t + 1 (t є Z ) Ví dụ 2: Giải phương trình nghiệm nguyên 6x –14 y = 12 Hướng dẫn: Ta nhận thấy (6 ,14) = (6 ,12) = 2 ị pt có nghiệm ta tiến hành giải như sau: Bước 1: 6x –14 y = 12 Û 3x – 7y = 6 Bước 2: Viết thuật toán Ơclit cho 3 và 7 7 = 3.2 + 1 Bước 3: Tính = q0 = 2 = Bước 4: Tìm nghiệm riêng của phương trình 3x – 7y = 1 là (x0’, y0’) = (-2; -1) Bước 5: Xác định nghiệm riêng của pt 3x – 7y = 6 là (x0; y0) = (-12; -6) ị Nghiệm tổng quát của phương trình 6x –14 y = 12 là x = -12 – 7t hay x = 7t + 2 y = -6 – 3t y = 3t (t є Z ) * Nhận xét: Trên đây là phương pháp chung để giải phương trình nghiệm nguyên dạng ax + by = c Tuy nhiên khi đi vào bài toán cụ thể bằng các kiến thức về chia hết biết khéo léo sử dụng sẽ cho lời giải ngắn gọn. b.Cách giải thông thường khác (3 bước) Bước 1: Rút ẩn này theo ẩn kia (giả sử rút x theo y) Bước 2: Dựa vào điều kiện nguyên của x, tính chất chia hết suy luận để tìm y Bước 3: Thay y vào x sẽ tìm được nghiệm nguyên Ví dụ 1: Giải phương trình nghiệm nguyên: 2x + 5y =7 Hướng dẫn: Ta có 2x + 5y =7 Û x = Û x = 3 – 2y + Do x, y nguyên ị nguyên. Đặt = t với (t є Z ) ị y = 1 – 2t ị x = 3 – 2(1- 2t) + t = 5t + 1 Vậy nghiệm tổng quát của phương trình là: x = 5t + 1 y = -2t +1 (t є Z ) Ví dụ 2: Giải phương trình nghiệm nguyên 6x – 15 y = 25 Hướng dẫn: Ta thấy( 6,15 ) = 3 mà 3/25 Vậy không tồn tại x,y nguyên sao cho 6x- 15y = 25 Ví dụ 3: Tìm nghiệm nguyên dương của phương trình. 5x + 7y = 112 Hướng dẫn: Ta có 5x + 7y = 112 ị x = = 22 - y + Do x, y nguyên ị nguyên hay (2 – 2y) 5 Û 2(1-y) 5; (2 , 5) = 1 ị (1-y) 5 hay (y-1)5 . Đặt y-1 = 5t (t є Z ) ị y = 5t +1 thay y vào x ta có x = 21 – 7t ị lại có x > 0; y > 0 ị 5t + 1 > 0 t > - 21 – 7t > 0 t < 3 ị t = Nếu t = 0 ị x = 21; y = 1 Nếu t = 1 ị x = 14; y = 6 Nếu t = 2 ị x = 7; y = 11 II. Phương trình nghiệm nguyên dạng a1x1 + a2x2 + …+ anxn= c (2) Với a, c є Z (i = 1,2…n); n ³ 2 1.Định lý: Điều kiện cần và đủ để phương trình (2) có nghiệm là (a1, a2,…an) \ c 2.Cách giải: Đưa phương trình về 1 trong 2 dạng sau: a. Có một hệ số của một ẩn bằng 1 Giả sử a1 = 1. Khi đó x1 = c – a2x2 – a3x3 - …- anxn với x1, x2,…., xn є Z Nghiệm của phương trình là: (c - a2x2 – a3x3 - …- anxn , x2,…., xn) với x2,…., xn nguyên bất kỳ b. Có hai hệ số là hai số nguyên tố cùng nhau Giả sử ( a1, a2 ) = 1. Khi đó pt (2) Û a1x1 + a2x2 = c - a3x3 - …- anxn Giải phương trình theo 2 ẩn x1, x2 Ví dụ 4: Giải phương trình trên tập số nguyên 6x + 15y + 10 z = 3 Hướng dẫn: Phương trình 6x + 15y + 10 z = 3 có nghiệm nguyên vì (6 ,15, 10) = 1 và 1/3 Cách 1: Ta biến đổi 6x + 15y + 10 z = 3 Û x + 10(y + z) + 5 ( x+ y) = 3 Đặt t = y + z, k = x + y với( t, k є Z). Ta có: x + 10 t + 5k = 3 Vậy nghiệm tổng quát của phương trình x = 3- 10 t – 5k y = - 3 + 10 t + 6k ( t, k є Z) z = 3 – 9 t – 6k Cách 2: 6x + 15y + 10 z = 3 Û 6 (x + z) + 15 y + 4 z = 3 Đặt x + z = t ta có 6t +15 y + 4z = 3 Û 15 y + 4z = 3 – 6t Ta có cặp số (-1; 4) là nghiệm riêng của pt 15 y + 4z = 1 nên (-3 + 6t; 12 – 24 t) là nghiệm riêng của phương trình 15 y + 4z = 3 – 6t Do đó nghiệm tổng quát là: y = -3 + 6t + 4k (k є Z) z = 12 – 24t – 15 k lại có t = x + z ị x = t – z ị x = -12 = 25t + 15 k Vậy nghiệm tổng quát của phương trình 6x + 15y + 10 z = 3 là: x = -12 = 25t + 15 k y = -3 + 6t + 4k với ( t, k є Z) z = 12 – 24t – 15 k III. Phương trình nghiệm nguyên đưa về dạng g (x1, x2,…., xn) . h (x1, x2,…., xn) = a (3) Với a є Z 1.Cách giải: Đặt g (x1, x2,…., xn) = m (với m là ước của a) ị h(x1, x2,…., xn) = Giải hệ: g (x1, x2,…., xn) = m h(x1, x2,…., xn) = tìm được x1, x2,…., xn thử vào (3) ta được nghiệm của phương trình. 2.Chú ý: -Nếu a = 0 ta có g (x1, x2,…., xn) = 0 h(x1, x2,…., xn) = 0 -Nếu a = pa với p nguyên tố thì từ pt (3) ta có: g (x1, x2,…., xn) = pa1 h(x1, x2,…., xn) = pa2 Với a1 + a2 = a Ví dụ 5: Tìm x, y є Z biết x – y + 2xy = 6 Hướng dẫn: Ta có x – y + 2xy = 6 Û 2 x – 2y + 4 xy = 12 Û 2 x – 2y + 4 xy –1 = 11 Û (2x – 1) + 2y(2x-1) = 11 Û (2x – 1) (2y + 1) = 11 Ta có 11 = 1.11= (-1)(-11) = 11.1 = (-11)(-1) Ta có 2y + 1 = 1 ị (x; y) = (6; 0) 2x – 1 = 11 2y + 1 = -1 ị (x; y) = (-5; -1) 2x – 1 = -11 2y + 1 = 11 ị (x; y) = (1, 5) 2x – 1 = 1 2y + 1 = -11 ị (x; y) = ( 0; -6) 2x – 1 = -1 Ví dụ 6: Tìm nghiệm nguyên dương của phương trình 1 + x + x2 + x3 = 2y Hướng dẫn: Ta có 1 + x + x2 + x3 = 2y Û (1 + x) (1 + x2) = 2y ị 1 + x = 2 m và 1 + x2 = 2y – m (m nguyên dương) ị x = 2 m – 1 ị x2 = 22m – 2 m +1 + 1 x2 = 2y – m - 1 x2 = 2y – m – 1 ị 22m – 2m + 1 + 1 = 2 y – m - 1 ị 2 y – m – 22m + 2m +1 = 2 Nếu m = 0 ị x = 0 ; y = 0 (t/m) Nếu m > 0 ị 2 y – m – 1 – 22m – 1 + 2m = 1 mà 22m – 1và 2m đều là số chẵn nên: ị 2 y – m – 1 lẻ ị 2 y – m – 1 = 1 ị y – m – 1 = 0 ị y = m + 1 ị 2 m - 22m – 1 = 0 ị 2 m = 22m – 1 ị m = 2m – 1 ị m = 1 ị y = 2 ; x = 1 Vậy (x, y) = (0; 0); (1; 2) IV. Phương trình nghiệm nguyên đưa về dạng [g1 (x1, x2,…., xn)]2 + [g2 (x1, x2,…., xn)]2 + …+ [gn (x1, x2,…., xn)]2 = 0 1.Cách giải:Ta thấy vế trái của phương trình là các số hạng không âm, tổng của chúng bằng 0 nên mỗi số hạng phải bằng 0 g1 (x1, x2,…., xn) = 0 Do vậy có: g2 (x1, x2,…., xn) = 0 ………………….. gn (x1, x2,…., xn) = 0 Giải hệ này ta được x1 , x2 ,…, xn Ví dụ 7: Tìm nghiệm nguyên của phương trình 2x2 + y 2 –2xy + 2y – 6x + 5 = 0 Hướng dẫn: (Dùng phương pháp phân tích thành nhân tử ta biến đổi vế trái của phương trình) Ta có 2x2 + y 2 –2xy + 2y – 6x + 5 = 0 Û y 2 – 2y (x - 1) + (x-1)2 + x2 – 4x + 4 = 0 Û (y – x + 1)2 + (x – 2 )2 = 0 Vậy y – x + 1 = 0 hay x = 2 x – 2 = 0 y = 1 Vậy nghiệm nguyên của phương trình là x = 2 ; y = 1 Ví dụ 8: Tìm nghiệm nguyên của phương trình : (x –1) (y+1) = (x+ y)2 Hướng dẫn: Ta có (x-1) (y+1) = (x+ y)2 Û (x-1) (y+1) = [(x-1) + (y+1)]2 Û [(x-1) + (y+1)]2 - (x-1) (y+1) = 0 Û (x-1)2 + (y+1)2 + (x-1) (y+1) = 0 Û [(x-1) + (y+1)]2 + (y+1)2 = 0 Û y + 1 = 0 Û y = -1 (x-1) + (y+1) = 0 x = 1 Vậy nghiệm của phương trình là ( x = 1 ; y = -1) V- Phương trình nghiệm nguyên mà các ẩn có vai trò bình đẳng Khi làm toán ta thường gặp một số bài toán mà trong đó các ẩn bình đẳng với nhau . Để giải các bài toán đó có nhiều cách giải khác nhau tuỳ thuộc vào từng loại cụ thể. ở đây ta nghiên cứu đến 1 phương pháp giải toán này: Ta giả sử các ẩn xảy ra theo một trật tự tăng dần rồi tiến hành giải Ví dụ 9: Tìm nghiệm nguyên dương của phương trình + + + = 1 Hướng dẫn: Giả sử 1 Ê x Ê y Ê z ị x2 Ê xy Ê xz Ê yz Ê xyz ị 1 = + + + Ê + + + Û 1 Ê ị x2 Ê 12 ị x є 1, 2,3 Nếu x = 1 ị + + + = 1 ị z + 1 + y + 9 = yz ị yz – z – y + 1 = 11 (y- 1) (z - 1) = 11 ị y = 2 ; z = 12 hoặc z =2 ; y = 12 Nếu x = 2 ị + + + = 1 ị (2y - 1) (2z-1) = 23 ị y = 1; z = 12 hoặc y = 12; z = 1 Nếu x = 3 ị (3y – 1) (3z - 1) = 37 vô nghiệm Vậy (x, y, z) = (1; 2, 12) và các hoán vị Ví dụ 10: Tìm x, y, z nguyên của phương trình + + = 3 Hướng dẫn: Vì x, y, z bình đẳng nên ta giả sử 0 < x Ê y Ê z ị 3 = + + = x (+ ) + ³ 2x + x ị 3x Ê 3 ị xÊ 1 ị x = 1 Với x = 1 ta có 3 = + yz + ³ 2 + yz ị yz Ê 1 ị y = 1 ; z = 1 Vậy nghiệm của pt (1,1,1) Ví dụ 11: Chứng minh rằng phương trình sau không có nghiệm tự nhiên + + = 1 (x,y ạ 0) Hướng dẫn: Vì x, y có vai trò bình đẳng . Ta giả sử 1Ê x Ê y Ta có x2 Ê xy Ê y2 (giả sử phương trình có nghiệm tự nhiên) ị 1 = + + Ê ị x2 Ê 3 ị x = 1( vì x є N* ) ị 1+ + = 1 (vô nghiệm) ị phương trình không có nghiệm là số tự nhiên. Chương II: Một số phương pháp giải phương trình nghiệm nguyên Không có phương pháp chung để giải phương trình nghiệm nguyên nhưng để giải nó người ta thường áp dụng một số phương pháp sau hoặc kết hợp các phương pháp tuỳ theo từng bài cụ thể. Sau đây là một số phương pháp thường dùng I- Phương pháp 1 : Sử dụng tính chẵn lẻ Ví dụ 12: Tìm x, y nguyên tố thoả mãn y2 – 2x2 = 1 Hướng dẫn: Ta có y2 – 2x2 = 1 ị y2 = 2x2 +1 ị y là số lẻ Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1 Û x2 = 2 k2 + 2k ị x chẵn , mà x nguyên tố ị x = 2, y = 3 Ví dụ 13: Tìm nghiệm nguyên dương của phương trình (2x + 5y + 1)( + y + x2 + x) = 105 Hướng dẫn: Ta có: (2x + 5y + 1)( + y + x2 + x) = 105 Ta thấy 105 lẻ ị 2x + 5y + 1 lẻ ị 5y chẵn ị y chẵn + y + x2 + x = + y + x(x+ 1) lẻ có x(x+ 1) chẵn, y chẵn ị lẻ ị = 1 ị x = 0 Thay x = 0 vào phương trình ta được (5y + 1) ( y + 1) = 105 5y2 + 6y – 104 = 0 ị y = 4 hoặc y = ( loại) Thử lại ta có x = 0; y = 4 là nghiệm của phương trình II. Phương pháp 2 : Phương pháp phân tích Thực chất là biến đổi phương trình về dạng: g1 (x1, x2,…., xn) h (x1, x2,…., xn) = a Ví dụ 14: Tìm nghiệm nguyên của phương trình x4 + 4x3+ 6x2+ 4x = y2 Hướng dẫn: Ta có: x4 + 4x3+ 6x2+ 4x = y2 Û x4 +4x3+6x2+4x +1- y2=1 Û (x+1)4 – y2 = 1 Û [(x+1)2 –y] [(x+1)2+y]= 1 (x+1)2 – y = 1 1 + y = 1- y Û (x+1)2 + y = 1 Û (x+1)2 – y = -1 -1 + y = -1 - y (x+1)2 + y = -1 ị y = 0 ị (x+1)2 = 1 Û x+1 = ±1 ị x = 0 hoặc x = -2 Vậy ( x, y ) = ( 0, 0 ); ( - 2, 0 ) Ví dụ 15: Tìm x, y nguyên sao cho ( x + y ) P = xy với P nguyên tố. Giải Ta có ( x + y ) P = xy với xy – Px – Py = 0 Û x ( y – P ) – ( Py – P2) = P2 Û ( y- P ) ( x- P ) = P2 Mà P nguyên tố ị P2 = 1.P2 = P.P = (-1)(-P2) = ( -P ) (-P) ị Các cặp số (x,y ) là: (P+1, P(P+1) ); ( P-1, P (P-1) ); (2p, 2p); (0,0) và các hoán vị của chúng. Phương pháp 3 : Phương pháp cực hạn Sử dụng đối với 1 số bài toán vai trò của các ẩn bình đẳng như nhau: Ví dụ 16: Tìm nghiệm nguyên dương của phương trình: 5 ( x + y + z + t ) + 10 = 2 xyzt Hướng dẫn: Ta giả sử x ³ y ³ z ³ t ³ 1 Ta có: 5 ( x + y + z + t ) + 10 = 2 xyzt Û 2 = + + + + Ê ị t 3 Ê 15 ị t = 1 hoặc t = 2 * Với t = 1 ta có 5 (x+ y + z + 1) + 10 = 2 xyz Û 2 = + + + Ê ị Ê 15 ị z = Nếu z = 1 có 5 (x+ y ) + 20 = 2xy Û (2x – 5) (2y - 5) = 65 ị x = 35 hoặc x = 9 y = 3 y= 5 Ta được nghiệm ( 35; 3; 1; 1); (9; 5; 1; 1) và các hoán vị của chúng Với z = 2; z = 3 phương trình không có nghiệm nguyên * Với t = 2 thì 5 (x+ y + z ) + 20 = 4 xyz Û 4 = + + + Ê ị Ê Ê 9 ị z = 2 (vì z³ t³ 2) ị (8x – 5) (8y – 5) = 265 Do x³ y³ z ³ 2 nên 8x – 5 ³ 8y – 5 ³ 11 ị (8x – 5) (8y – 5) = 265 vô nghiệm vậy nghiệm của phương trình là bộ (x, y, z) = ( 35; 3; 1; 1); (9; 5; 1; 1) và các hoán vị Ví dụ 17: Tìm nghiệm nguyên dương của phương trình x + y + z +t = xyzt Hướng dẫn: Ta giả sử 1Ê xÊ y Ê z Ê t có xyzt = x + y + z +t Ê 4t Vì t nguyên dương ị xyz Ê 4 ị xyz ẻ{1,2,3,4} Nếu xyz = 1 ị x = y = z = 1 ị 3+t = t ( loại) Nếu xyz = 2 mà x Ê y Ê z ị x = 1; y=1; z = 2 ị t = 4 Nếu xyz = 3 mà x Ê y Ê z ị x = 1; y=1; z = 3 ị t = 5/2 ( loại ) Nếu xyz = 4 mà x Ê y Ê z ị x = 1; y=1; z = 4 hoặc x = 1; y=2; z = 2 ị t = 2 ( loại vì t ³ z) hoặc t = 5/4 ( loại ) Vậy nghiệm của phương trình là bộ ( x;y;z) = (1;1;2;4) và các hoán vị của chúng. IV- Phương pháp loại trừ ( phương pháp 4 ) Khẳng định nghiệm rồi loại trừ các giá trị còn lại của ẩn Ví dụ 18: Tìm nghiệm nguyên dương của phương trình 1! + 2! + … + x! = Hướng dẫn: Với x³ 5 thì x! có tận cùng là 0 và 1! + 2! + 3! + 4! Có tận cùng là 3 ị 1! + 2! + … + x! có tận cùng là 3, không là số chính phương (loại) Vậy x < 5 mà x nguyên dương nên: x = Thử vào phương trình ta được (x = 1, y= 2); (x = 3, y= 3) là thoả mãn Ví dụ 19: Tìm tất cả các nghiệm nguyên của phương trình y2 + y = x4 + x3 + x2 + x Hướng dẫn: Ta có : y2 + y = x4 + x3 + x2 + x Û 4 y2 + 4y + 1 = 4 x4 + 4 x3 + 4x2 + 4x + 1 ị (2x2 + x ) 2 - (2y + 1)2 = (3x + 1) (x +1) hay (2x2 + x + 1) 2 - (2y+ 1)2 = x(x-2) Ta thấy: Nếu x> 0 hoặc x 0 Nếu x > 2 hoặc x 0 ị Nếu x>2 hoặc x< 1 thì (2x2 + x) <(2y+1)2 < (2x2 + x + 1) 2 (loại) ị -1Ê x Ê 2 ị x = 0, 1, -1, 2 Xét x = 2ị y2 + y =30 ị y = 5 hoặc y= -6 Xét x= 1 ị y2 + y = 4 (loại) Xét x = 0 ị y2 + y = 0 ị y (y + 1) = 0 ị y = 0 hoặc y = -1 Xét x = -1 ị y2 + y = 0 ị y = 0 hoặc y= -1 Vậy nghệm nguyên của phương trình là: (x,y) = (2, 5); (2, -6); (0, 0); (0, -1); (-1;0); (-1, -1) V.Phương pháp 5: Dùng chia hết và có dư Ví dụ 20: Tìm nghiệm nguyên của phương trình x2 – 2y2 = 5 Hướng dẫn: Xét x 5 mà x2 – 2y2 = 5 ị 2y2 5 ị y2 5 (2,5) = 1 5 là số nguyên tố ị y2 25 ị x2 – 2y2 25 lại có x 5 ị x2 25 5 25 loại Xét x 5 ị y 5 và x2 chia cho 5 có các số dư 1 hoặc 4 y2 chia cho 5 có các số dư 1 hoặc 4 ị 2y2 chia cho 5 dư 2 hoặc 3 ị x2 – 2 y2 chia cho 5 dư 1 hoặc 2(loại) Vậy phương trình x2 – 2y2 = 5 vô nghiệm Ví dụ 21: Tìm x, y là số tự nhiên thoả mãn x2 + = 3026 Hướng dẫn: Xét y = 0 ị x2 + 30 = 3026 ị x2 = 3025 mà x є N ị x = 55 Xét y > 0 ị 3, x2 chia cho 3 dư 0 hoặc 1 ị x2 + chia cho 3 dư 0 hoặc 1 mà 3026 chia cho 3 dư 2 (loại) Vậy nghiệm (x,y) = (55,0) VI. Phương pháp 6 : Sử dụng tính chất của số nguyên tố Ví dụ 22: Tìm x, y, z nguyên tố thoả mãn xy + 1 = z Hướng dẫn: Ta có x, y nguyên tố và xy + 1 = z ị z > 3 Mà z nguyên tố ị z lẻ ị xy chẵn ị x chẵn ị x = 2 Xét y = 2 ị 22 + 1 = 5 là nguyên tố ị z = 5 (thoả mãn) Xét y> 2 ị y = 2k + 1 (k є N) ị 22k+1 + 1 = z ị 2. 4k + 1 = z Có 4 chia cho 3 dư 1 ị (2.4k+1) 3 ị z 3 (loại) Vậy x = 2, y = 2, z = 5 thoả mãn Ví dụ 23 : Tìm số nguyên tố p để 4p + 1 là số chính phương Hướng dẫn: đặt 4p + 1 = x2 (x є N) ị x lẻ đặt x = 2k + 1 (k є N) ị 4p + 1 = (2k + 1)2 Û 4p + 1 = 4k2 + 4k + 1 Û p =k(k+1) Û k(k + 1) chẵn ị p chẵn, p nguyên tố ị p = 2 VII. Phương pháp 7: Đưa về dạng tổng Ví dụ 24: Tìm nghiệm nguyên của phương trình x2 + y2 – x – y = 8 Hướng dẫn: Ta có x2 + y2 –x – y = 8 Û 4 x2 + 4 y2 – 4 x –4y = 32 Û (4x2 – 4x +1) + (4y2 – 4y + 1) = 34 Û (2x – 1)2 + (2y – 1)2 = 34 Bằng phương pháp thử chọn ta thấy 34 chỉ có duy nhất 1 dạng phân tích thành tổng của 2 số chính phương 32 và 52 Do đó ta có = 3 hoặc = 5 = 5 = 3 Giải ra ta được (x,y) = (2,3); (2,-2); (-1, -2); (-1, 3) và các hoán vị của nó. Ví dụ 25: Tìm nghiệm nguyên của phương trình x2 – 4xy + 5y2 = 169 Hướng dẫn: Ta có x2 – 4xy + 5y2 = 169 Û (x – 2y)2 + y2 = 169 Ta thấy 169 = 02 + 132 = 52 + 122 ị = 0 hoặc = 13 = 13 = 0 hoặc = 5 hoặc = 12 = 12 = 5 Giải ra ta được (x, y) = (29, 12);(19, 12); (-19, -12); (22, 5); (-2, 5) ;(2, -5); (-22, -5); (26, 13); (-26, -13); (-13. 0); (13, 0) VIII .Phương pháp 8: Lùi vô hạn Ví dụ 26: Tìm nghiệm nguyêm của phương trình x2 – 5y2 = 0 Hướng dẫn: Giả sử x0, y0 là nghiệm của phương trình x2 – 5y2 = 0 ta có x - 5y = 0 ị x0 5 đặt x0 = 5 x1 Ta có (5x1) 2 – 5y = 0 Û 5x- y = 0 ị y0 5 đặt y0 = 5y1 ị x- 5y = 0 Vây nếu (x0,,y0) là nghiệm của phương trình đã cho thì (,) cũng là nghiệm của phương trình đã cho. Cứ tiếp tục lập luận như vậy (,) với k nguyên dương bất kỳ cũng là nghiệm của phương trình. Điều này xảy ra khi x0 = y0 = 0 Vậy phương trình có nghiệm duy nhất là x = y = 0 Ví dụ 27: Tìm nghiệm nguyên của phương trình x2 + y2 + z2 = x2 y2 Hướng dẫn: Nếu x, y đều là số lẻ ị x2 , y2 chia cho 4 đều dư 1 x2y2 chia cho 4 dư 1 x2 + y2 chia cho 4 dư 2 z2 chia cho 4 dư 3 (loại) mà x2 + y2 + z2 = x2 y2 ị x chẵn hoặc y chẵn * Giả sử x chẵn ị hoặc y chẵn * Giả sử x chẵn ị x2 , x2y2 chẵn ị x2 4 ị x2 y2 4ị (y2 + z2) 4 ị y và z phải đồng thời chẵn Đặt x = 2x1, y = 2y1, z = 2z1 ta có x+ y+z = xy lập luận tương tự ta có x + y + z = 16 xy quá trình này cứ tiếp tục ta thấy (x1, y1, z1 ) là nghiệm của phương trình thì (,,) là nghiệm của phương trình với k nguyên dương ị x1 = y1 = z1 = 0 Vậy pt có nghiệm là (0, 0, 0) IX. Phương pháp 9: Sử dụng tính chất nghiệm của phương trình bậc 2 Biến đổi phương trình về dạng phương trình bậc 2 của ẩn coi các ẩn khác là tham số, sử dụng các tính chất về nghiệm của phương trình bậc 2 để xác định giá trị của tham số Ví dụ 28: Giải phương trình nghiệm nguyên 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 Hướng dẫn: Ta có pt 3x2 + y2 + 4xy + 4x + 2y + 5 = 0 Û y2 + (4x + 2)y + 3 x2 + 4x + 5 = ) (*) coi x là tham số giải phương trình bậc 2 pt (*) ẩn y ta có y = -(2x + 1) ± Do y nguyên, x nguyên ị nguyên Mà = (2x + 1)2 – (3x2 + 4x + 5) = x2 – 4 ị x2 – 4 = n2 (n є Z) ị (x- n) (x+ n) = 4 ị x = ± 2 ị x – n = x + n = ± 2 Vậy phương trình có nghiệm nguyên (x, y) = (2; -5); (-2, 3) Ví dụ 29: Tìm nghiệm nguyên của phương trình x2 – (y+5)x + 5y + 2 = 0 Hướng dẫn: Ta có x2 – (y+5)x + 5y + 2 = 0 coi y là tham số ta có phương trình bậc 2 ẩn x. Giả sử phương trình bậc 2 có 2 nghiệm x1, x2 Ta có x1 + x2 = y + 5 x1 x2 = 5y + 2 Theo định lý Viet ị 5x1 + 5x2 = 5y + 25 x1x2 = 5y + 2 ị 5 x1 + 5x2 – x1x2 = 23 Û (x1 -5) (x2 -5) = 2 Mà 2 = 1.2 = (-1)(-2) ị x1 + x2 = 13 hoặc x1 + x2 = 7 ị y = 8 hoặc y = 2 thay vào phương trình ta tìm được các cặp số (x,y ) = (7, 8); (6, 8); (4, 2); (3, 2); là nghiệm của phương trình X- Phương pháp 10 : Dùng bất đẳng thức Ví dụ 30: Tìm nghiệm nguyên của phương trình x2 –xy + y2 = 3 Hướng dẫn: Ta có x2 –xy + y2 = 3 Û (x- )2 = 3 - Ta thấy (x- )2 ³ 0 ị 3 - ³ 0 ị -2 Ê y Ê 2 ị y= ± 2; ±1; 0 thay vào phương trình tìm x Ta được các nghiệm nguyên của phương trình là : (x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1) Ví dụ 31: Chứng minh rằng phương trình + + = b không có nghiệm tự nhiên khi b = 1 hoặc b = 2 nhưng có vô số nghiệm tự nhiên khi b = 3 Hướng dẫn: Ta thấy x, y, z є Zị , ,> 0 Theo bất đẳng thức Côsi ta có ( + +)3 ³ 27 ( )= 27 ị + + ³ 3 Đẳng thức xảy ra khi x = y = z Vậy phương trình + + = b không có nghiệm là số tự nhiên khi b = 1 hoặc b = 2 và có vô số nghiệm khi b = 3 chẳng hạn ( x = a, y = a, z = a) với a là số tự nhiên bất kỳ. Chương III: Bài tập luyện tập rèn tư duy sáng tạo Bài 1:Tìm nghiệm nguyên của phương trình 2x + 3y = 11 Hướng dẫn Cách 1: Ta thấy phương trình có cặp nghiệm đặc biệt là x0 = 4, y0 = 1 Vì 2.4 + 3.1 = 11 ị( 2x + 3y) – (2.4 + 3.1) = 0 Û 2(x-4) + 3(y-1) = 0 ị 2(x-4) = - 3(y-1) mà (2,3) = 1 Đặt x – 4 = 3k và y – 1 = 2k với ( k ẻ Z) Vậy nghiệm tổng quát của pt là : x = 4 – 3k y = 1+ 2k ( k ẻ Z) *Nhận xét: Theo cách giải này phải tìm ra 1 cặp nghiệm nguyên đặc biệt (x0, y0) của phương trình vô định ax + by = c Nếu phương trình có hệ số a, b, c lớn thì cách giải khó khăn. Cách 2: Dùng tính chất chia hết. Ta có 2x + 3y = 11 ị x= = 5- y- Do x, y nguyên ị nguyên đặt = k ị y = 2k +1 ị x = 4- 3k (k ẻ Z) y = 2k +1 (k ẻ Z) Vậy nghiệm tổng quát: x = 4- 3k Bài 2: Tìm cặp số nguyên dương (x,y) thoả mãn phương trình 6x2 + 5y2 = 74 Hướng dẫn: Cách 1: Ta có 6x2 + 5y2 = 74 Û 6x2 –24 = 50 – 5y2 Û 6(x2 – 4) = 5(10 – y2) ị 6(x2 – 4) 5 ị x2 – 4 5 (6, 5) = 1 ị x2 = 5t + 4 (t ẻN) Thay x2 – 4 = 5t vào phương trình ị y2 = 10 – 6t lại có x2 > 0 Û t > y2 > 0 t < ị t = 0 hoặc t = 1 với t = 0 ta có x2 = 4, y2 = 10 (loại) Với t = 1 ta có x2 = 9 Û x = ± 3 y2 = 4 y = ± 2 mà x, y ẻ Z ị x = 3, y = 2 thoả mãn Cách 2: Sử dụng tính chẵn lẻ và phương pháp chặn Ta có 6x2 + 5y2 = 74 là số chẵn ị y chẵn lại có 0< 6x2 ị 0< 5y2 < 74 Û 0 < y2 < 14 ị y2 = 4 ị x2 = 9 Cặp số (x,y) cần tìm là (3, 2) Cách 3: Ta có 6x2 + 5y2 = 74 Û 5x2 + 5y2 + x2 + 1 = 75 ị x2 + 1 5 mà 0 < x2 Ê 12 ị x2 = 4 hoặc x2 = 9 Với x2 = 4 ị y2 = 10 loại Với x2 = 9 ị y2 = 4 thoả mãn cặp số (x,y) cần tìm là (3, 2) Bài 3: Tìm nghiệm nguyên của phương trình: x2 + y2 = 2x2y2 Hướng dẫn: Cách 1: Đặt x2 = a, y2 = b Ta có a + b = 2 ab ị a

File đính kèm:

  • docP_T ngiem nguyen_Le Trung.doc