Cho nửa đường tròn tâm 0 có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax và By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax; By theo thứ tự ở C; D.
a) CMR: Đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của M trên nửa đường tròn (0) để ABDC có chu vi nhỏ nhất.
c) Tìm vị trí của C; D để hình thang ABDC có chu vi 14cm. Biết AB = 4cm.
1 trang |
Chia sẻ: luyenbuitvga | Lượt xem: 1035 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề thi thử học sinh giỏi Toán 9 - Đề số 12, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 12
Câu 1: (4 điểm).
Giải các phương trình:
1) x3 - 3x - 2 = 0
2) = x2 - 12x + 38.
Câu 2: ( 6 điểm)
1) Tìm các số thực dương a, b, c biết chúng thoả mãn abc = 1 và a + b + c + ab + bc + ca £ 6
2) Cho x > 0 ; y > 0 thoã mãn: x + y ³ 6
Hãy tìm giá trị nhỏ nhất của biểu thức:
M = 3x + 2y +
Câu 3: (3 điểm)
Cho x + y + z + xy + yz + zx = 6
CMR: x2 + y2 + z2 ³ 3
Câu 4: (5 điểm)
Cho nửa đường tròn tâm 0 có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax và By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax; By theo thứ tự ở C; D.
a) CMR: Đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của M trên nửa đường tròn (0) để ABDC có chu vi nhỏ nhất.
c) Tìm vị trí của C; D để hình thang ABDC có chu vi 14cm. Biết AB = 4cm.
Câu 5: (2 điểm)
Cho hình vuông ABCD , hãy xác định hình vuông có 4 đỉnh thuộc 4 cạnh của hình vuông ABCD sao cho hình vuông đó có diện tích nhỏ nhất./.
File đính kèm:
- hsgtoan9d12.doc