Đề thi tuyển sinh lớp 10 THPT tp.HCM năm học 2011 – 2012 đề chính thức môn toán

Bài 4: (1,5 điểm)

 Cho phương trình (x là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.

b) Gọi x1, x2 là các nghiệm của phương trình.

Tìm m để biểu thức A = . đạt giá trị nhỏ nhất

 

Bài 5: (3,5 điểm)

 Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).

a) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.

b) Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).

Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân

c) Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.

d) Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID

 

doc14 trang | Chia sẻ: oanh_nt | Lượt xem: 1145 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh lớp 10 THPT tp.HCM năm học 2011 – 2012 đề chính thức môn toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2011 – 2012 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) b) c) d) Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính. Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: Bài 4: (1,5 điểm) Cho phương trình (x là ẩn số) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m. Gọi x1, x2 là các nghiệm của phương trình. Tìm m để biểu thức A = . đạt giá trị nhỏ nhất Bài 5: (3,5 điểm) Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC). Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF. Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F). Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp. Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID ---------------------- Hết ------------------- BÀI GIẢI Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) (a) Vì phương trình (a) có a + b + c = 0 nên (a) b) Û Û Û c) x4 + 5x2 – 36 = 0 (C) Đặt u = x2 ³ 0, phương trình thành : u2 + 5u – 36 = 0 (*) (*) có D = 169, nên (*) Û hay (loại) Do đó, (C) Û x2 = 4 Û x = ±2 Cách khác : (C) Û (x2 – 4)(x2 + 9) = 0 Û x2 = 4 Û x = ±2 d) (d) (d) có : a + b + c = 0 nên (d) Û x = 1 hay Bài 2: b) PT hoành độ giao điểm của (P) và (D) là Û x2 – 2x – 3 = 0 (Vì a – b + c = 0) y(-1) = -1, y(3) = -9 Vậy toạ độ giao điểm của (P) và (D) là . Bài 3: Thu gọn các biểu thức sau: = = = = = = = = = = = = = Bài 4: a/ Phương trình (1) có ∆’ = m2 + 4m +5 = (m+2)2 +1 > 0 với mọi m nên phương trình (1) có 2 nghiệm phân biệt với mọi m. b/ Do đó, theo Viet, với mọi m, ta có: S = ; P = A = = =với mọi m. Và A = 6 khi m = Vậy A đạt giá trị nhỏ nhất là 6 khi m = A B C D P E O H I K F Q Bài 5: a) Tứ giác AEHF là hình chữ nhật vì có 3 góc vuông Góc HAF = góc EFA (vì AEHF là hình chữ nhật) Góc OAC = góc OCA (vì OA = OC) Do đó: góc OAC + góc AFE = 900 Þ OA vuông góc với EF b) OA vuông góc PQ Þ cung PA = cung AQ Do đó: DAPE đồng dạng DABP Þ Þ AP2 = AE.AB Ta có : AH2 = AE.AB (hệ thức lượng DHAB vuông tại H, có HE là chiều cao) Þ AP = AH Þ DAPH cân tại A c) DE.DF = DC.DB, DC.DB = DK.DA Þ DE.DF = DK.DA Do đó DDFK đồng dạng DDAE Þ góc DKF = góc DEA Þ tứ giác AEFK nội tiếp d) Ta có : AF.AC = AH2 (hệ thức lượng trong DAHC vuông tại H, có HF là chiều cao) Ta có: AK.AD = AH2 (hệ thức lượng trong DAHD vuông tại H, có HK là chiều cao) Vậy Þ AK.AD = AF.AC Từ đó ta có tứ giác AFCD nội tiếp, vậy ta có: IC.ID=IF.IK (DICF đồng dạng DIKD) và IH2 = IF.IK (từ DIHF đồng dạng DIKH) Þ IH2 = IC.ID SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.Hà Nội MÔN : TOÁN - Năm học : 2011 – 2012 Ngày thi : 22 tháng 6 năm 2011 Thời gian làm bài: 120 phút Bài I (2,5 điểm) Cho Với . 1) Rút gọn biểu thức A. 2) Tính giá trị của A khi x = 9. 3) Tìm x để . Bài II (2,5 điểm) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày? Bài III (1,0 điểm) Cho Parabol (P): và đường thẳng (d): . 1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1. 2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung. Bài IV (3,5 điểm) Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N. 1) Chứng minh AMEI là tứ giác nội tiếp. 2) Chứng minh và . 3) Chứng minh AM.BN = AI.BI . 4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng. Bài V (0,5 điểm) Với x > 0, tìm giá trị nhỏ nhất của biểu thức: . ------------------------------------------------------------------------------------------------------- Thí sinh không được sử dụng tài liệu. Giám thị không được giải thích gì them HƯỚNG DẪN GIẢI Bài 1: 1/ Rút gọn: ĐK: 2/ Với x = 9 Thỏa mãn , nên A xác định được, ta có . Vậy 3/ Ta có: ĐK Kết hợp với Vậy với 0 ≤ x < 100 và x ≠ 25 thì A < 1/3 Bài 2 Gọi thời gian đội xe chở hết hàng theo kế hoạch là x(ngày) (ĐK: x > 1) Thì thời gian thực tế đội xe đó chở hết hàng là x – 1 (ngày) Mỗi ngày theo kế hoạch đội xe đó phải chở được (tấn) Thực tế đội đó đã chở được 140 + 10 = 150(tấn) nên mỗi ngày đội đó chở được (tấn) Vì thực tế mỗi ngày đội đó chở vượt mức 5 tấn, nên ta có pt: Þ 150x – 140x + 140 = 5x2 -5x Û 5x2 -5x – 10x - 140 = 0 Û 5x2 -15x - 140 = 0 Û x2 -3x - 28 = 0 Giải ra x = 7 (T/M) và x = -4 (loại) Vậy thời gian đội xe đó chở hết hàng theo kế hoạch là 7 ngày Bài 3: 1/ Với m = 1 ta có (d): y = 2x + 8 Phương trình hoành độ điểm chung của (P) và (d) là x2 = 2x + 8 x2 – 2x – 8 = 0 Giải ra x = 4 => y = 16 x = -2 => y = 4 Tọa độ các giao điểm của (P) và (d) là (4 ; 16) và (-2 ; 4) 2/ Phương trình hoành độ điểm chung của (d) và (P) là x2 – 2x + m2 – 9 = 0 (1) Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu Þac < 0 Þ m2 – 9 < 0 Þ (m – 3)(m + 3) < 0 Giải ra có – 3 < m < 3 Bài 4 1/ Xét tứ giác AIEM có góc MAI = góc MEI = 90o. => góc MAI + góc MEI = 180o. Mà 2 góc ở vị trí đối diện => tứ giác AIEM nội tiếp 2/ Xét tứ giác BIEN có góc IEN = góc IBN = 90o. góc IEN + góc IBN = 180o. tứ giác IBNE nội tiếp góc ENI = góc EBI = ½ sđ cg IE (*) Do tứ giác AMEI nội tiếp => góc EMI = góc EAI = ½ sđ EB (**) Từ (*) và (**) suy ra góc EMI + góc ENI = ½ sđ AB = 90o. 3/ Xét tam giác vuông AMI và tam giác vuông BIN có góc AIM = góc BNI ( cùng cộng với góc NIB = 90o) DAMI ~ D BNI ( g-g) AM.BN = AI.BI 4/ Khi I, E, F thẳng hàng ta có hình vẽ Do tứ giác AMEI nội tiếp nên góc AMI = góc AEF = 45o. Nên tam giác AMI vuông cân tại A Chứng minh tương tự ta có tam giác BNI vuông cân tại B AM = AI, BI = BN Áp dụng Pitago tính được Vậy ( đvdt) Bài 5: Vì và x > 0 , Áp dụng bdt Cosi cho 2 số dương ta có: x + M = ³ 0 + 1 + 2010 = 2011 M ³ 2011 ; Dấu “=” xảy ra óÛ x = Vậy Mmin = 2011 đạt được khi x = Bài 5: Áp dụng cô si cho ba số ta có Dấu ‘=’ xẩy ra khi x = 1/2 mà Dấu ‘=’ xẩy ra khi x = 1/2 Vậy Vậy giá trị nhỏ nhất của M bằng 2011 khi M = SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NĂM HỌC 2011 – 2012 Môn: TOÁN ( chung) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút PHẦN 1 – Trắc nghiệm (1 điểm): Hãy chọn phương án đúng và viết vào bài làm chữ cái đứng trước phương án lựa chọn. Câu 1: Phương trình có hai nghiệm phân biệt khi và chỉ khi: A.. B.. C.. D.. Câu 2: Cho (O) nội tiếp tam giác MNP cân tại M. Gọi E; F lần lượt là tiếp điểm của (O) với các cạnh MN;MP. Biết.Khi đó, cung nhỏ EF của (O) có số đo bằng: A.. B.. C.. D.. Câu 3: Gọi là góc tạo bởi đường thẳng với trục Ox, gọi là góc tạo bởi đường thẳng với trục Ox. Trong các phát biểu sau,phát biểu nào sai ? A.. B. . C.. D.. Câu 4: Một hình trụ có chiều cao là 6cm và diện tích xung quanh là . Khi đó, hình trụ đã cho có bán kính đáy bằng A.cm. B. 3 cm. C. cm. D. 6cm. PHẦN 2 – Tự luận ( 9 điểm): Câu 1. (1,5 điểm) Cho biểu thức : với 1/ Rút gọn biểu thức P . 2/ Tìm x để 2P – x = 3. Câu 2.(2 điểm) Trên mặt phẳng với hệ tọa độ Oxy cho điểm M có hoành độ bằng 2 và M thuộc đồ thị hàm số . Lập phương trình đường thẳng đi qua gốc tọa độ O và điểm M ( biết đường thẳng OM là đồ thị hàm số bậc nhất). Cho phương trình . Biết phương trình (1) có hai nghiệm . Lập phương trình bậc hai ẩn y ( Với các hệ số là số nguyên ) có hai nghiệm lần lượt là Câu 3.(1,0 điểm) Giải hệ phương trình: Câu 4.(3,0 điểm): Cho (O; R). Từ điểm M ở ngoài (O;R) kẻ hai tiếp tuyến MA, MB của (O;R) ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt (O;R) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K . Chứng minh tứ giác NHBI là tứ giác nội tiếp. Chứng minh tam giác NHI đồng dạng với tam giác NIK. Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. Câu 5.(1,5 điểm) 1)Giải phương trình : 2)Chứng minh rằng : Với mọi . HD Câu 3.(1,0 điểm) Giải hệ phương trình: ĐKXĐ: Câu 4.(3,0 điểm) 1) nội tiếp 2) cm tương tự câu 1) ta có AINK nội tiếp 3) ta có: Do đó CNDI nội tiếp DC // AI Lại có Vậy AECI là hình bình hành => CI = EA. Câu 5.(1,5 điểm) Giải phương trình : Đặt x – 1 = t; = m ta có: Giải phương trình này ta được Với Với > 0 phương trình có hai nghiệm Chứng minh rằng : Với mọi (1) Đặt , ta có (2) (3) Vì => (3) đúng . Vậy ta có đpcm SỞ GD&ĐT VĨNH PHÚC ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011 – 2012 ĐỀ THI MÔN: TOÁN (Thời gian làm bài: 120 phút, không kể thời gian giao đề) PHẦN I: TRẮC NGHIỆM (2 điểm)Trong 4 câu: từ câu 1 đến câu 4, mỗi câu đều có 4 lựa chọn, trong đó chỉ có duy nhất một lựa chọn đúng. Em hãy viết vào tờ giấy làm bài thi chữ cái A, B, C hoặc D đứng trước lựa chọn mà em cho là đúng (Ví dụ: Nếu câu 1 em lựa chọn là A thì viết là 1.A) Câu 1. Giá trị của bằng: A. 12 B. 18 C. 27 D. 324 Câu 2. Đồ thị hàm số y= mx + 1 (x là biến, m là tham số) đi qua điểm N(1; 1) . Khi đó gí trị của m bằng: A. m = - 2 B. m = - 1 C. m = 0 D. m = 1 Câu 3. Cho tam giác ABC có diện tích bằng 100 cm2 . Gọi M, N, P tương ứng là trung điểm của AB, BC, CA. Khi đó diện tích tam giác MNP bằng: A. 25 cm2 B. 20 cm2 C. 30 cm2 D. 35 cm2 Câu 4. Tất cả các giá trị x để biểu thức có nghĩa là: A. x < 1 B. x 1 C. x > 1 D. x1 PHẦN II. TỰ LUẬN (8 điểm) Câu 5. (2.0 điểm) Giải hệ phương trình Câu 6. (1.5 điểm) Cho phương trình x2 – 2mx + m2 – 1 =0 (x là ẩn, m là tham số). Giải phương trình với m = - 1 Tìm tất cả các giá trị của m đê phương trình (1) có hai nghiệm phân biệt Tìm tât cả các giá trị của m để phương trình (1) có hai nghiệm x1 , x2 sao cho tổng P = x12 + x22 đạt giá trị nhỏ nhất. Câu 7. (1.5 điểm) Một hình chữ nhật ban đầu có cho vi bằng 2010 cm. Biết rằng nều tăng chiều dài của hình chữ nhật thêm 20 cm và tăng chiều rộng thêm 10 cm thì diện tích hình chữ nhật ban đầu tăng lên 13 300 cm2. Tính chiều dài, chiều rộng của hình chữ nhật ban đầu. Câu 8. (2.0 điểm) Cho tam giác ABC có ba góc nhọn, không là tam giác cân, AB < AC và nội tiếp đường tròn tâm O, đường kính BE. Các đường cao AD và BK của tam giác ABC cắt nhau tại điểm H. Đường thẳng BK cắt đường tròn (O) tại điểm thứ hai là F. Gọi I là trung điểm của cạnh AC. Chứng minh rằng: Tứ giác AFEC là hình thang cân. BH = 2OI và điểm H đối xứng với F qua đường thẳng AC. Câu 9.(2.0 điểm) Cho a, b, c là ba số thực dương thỏa mãn điều kiện a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: P = . -----HẾT----- KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2010-2011 HƯỚNG DẪN CHẤM MÔN TOÁN ———————— HƯỚNG DẪN CHUNG: -Hướng dẫn chấm chỉ trình bày một cách giải với các ý cơ bản học sinh phải trình bày, nếu học sinh giải theo cách khác mà đúng và đủ các bước thì giám khảo vẫn cho điểm tối đa. -Trong mỗi bài, nếu ở một bước nào đó bị sai thì các bước sau có liên quan không được điểm. -Bài hình học bắt buộc phải vẽ đúng hình thì mới chấm điểm, nếu không có hình vẽ đúng ở phần nào thì giám khảo không cho điểm phần lời giải liên quan đến hình của phần đó. -Điểm toàn là tổng điểm của các ý, các câu, tính đến 0,25 điểm và không làm tròn. BIỂU ĐIỂM VÀ ĐÁP ÁN: Phần I. Trắc nghiệm (2,0 điểm): Mỗi câu đúng cho 0,5 điểm. Câu 1 2 3 4 Đáp án B C A D Phần II. Tự luận (8,0 điểm). Câu 5 (2,0 điểm). Nội dung trình bày Điểm Xét hệ phương trình Từ (1) Þ x = y thay vào PT (2) ta được : x2 - 2x + 1 = 0 0,5 Û (x - 1)2 = 0 Þ x = 1 0,5 Thay x = 1 vào (1) Þ y = 1 0,5 Vậy nghiệm của hệ phương trình đã cho là: 0,5 Câu 6 (1,5 điểm). a. (0,5 điểm): Nội dung trình bày Điểm Với m = -1 ta có (1) : 0,25 Þ. Vậy với m = -1 PT có hai nghiệm là 0,25 b. (0,5 điểm): Nội dung trình bày Điểm Ta có D’ = m2 - (m2 - 1) = 1 > 0 với "m 0,25 Vậy với "m phương trình (1) luôn có hai nghiệm phân biệt 0,25 c. (0,5 điểm): Nội dung trình bày Điểm P = = 4m2 - 2m2 + 2 ³ 2 với "m 0,25 Dấu “=” xảy ra Û m = 0. Vậy với m = 0 thì phương trình (1) có hai nghiệm thỏa mãn P = đạt giá trị nhỏ nhất 0,25 Câu 7 (1,5 điểm). Nội dung trình bày Điểm Gọi chiều dài hình chữ nhật là x (cm), chiều rộng là y (cm) (điều kiện x, y > 0) 0,25 Chu vi hình chữ nhật ban đầu là 2010 cm. ta có phương trình (1) 0,25 Khi tăng chiều dài 20 cm, tăng chiều rộng 10 cm thì kích thước hình chữ nhật mới là: Chiều dài: (cm), chiều rộng: (cm) 0,25 Khi đó diện tích hình chữ nhật mới là: (2) 0,25 Từ (1) và (2) ta có hệ: Trừ từng vế của hệ ta được: y = 305 (thoả mãn). Thay vào phương trình (1) ta được: 0,25 Vậy chiều dài hình chữ nhật ban đầu là: 700 cm, chiều rộng là 305 cm 0,25 Câu 8. ( 2,0 điểm). a. (1,0 điểm): Nội dung trình bày Điểm Có : BFE = 900 (góc nội tiếp chắn nửa đường tròn) Þ FE ^ BF 0,25 BF ^ AC (gt) Þ FE ∥ AC (1) 0,25 Þ sđ AF = sđ CE Þ AFE = CFE Þ FAC = ECA (2) 0,25 Từ (1) và (2) { AFEC là hình thang cân 0,25 b. (1,0 điểm): Nội dung trình bày Điểm EC ^ BC Þ EC ∥ AH (1). 0,25 BF ^ AC (gt) Þ FE ∥ AC (1).Þ HAC = ECA mà ECA = FAC Þ D HAF cân tại A Þ AH = AF (2) Từ (1)và (2) Þ { AHCE là hình bình hành 0,25 Þ I là giao điểm hai đường chéo Þ OI là đường trung bình D BEH Þ BH = 2OI 0,25 D HAF cân tại A , HF ^ AC Þ HK = KF Þ H đối xứng với F qua AC 0,25 Câu 9. ( 1,0 điểm). Nội dung trình bày Điểm Có: Þ = Þ 0,25 Tương tự: 0,25 Þ P £ == 0,25 Dấu “=” xảy ra khi Từ đó giá trị lớn nhất của P là đạt được khi và chỉ khi 0,25

File đính kèm:

  • docDe tuyen sinh 20112012 QH.doc
Giáo án liên quan