I.Mục tiêu : Qua bài này Học sinh cần:
- Củng cố kiến thức về 7 hằng đẳng thức đáng nhớ.
- HS vận dụng thành thạo các hằng đẳng thức vào giải toán.
- Hướng dẫn HS dùng hằng đẳng thức (AB)2 để xét giá trị của một số tam thức bậc 2.
II. Phương tiện dạy học.
GV:Nội dung ôn tập
HS: Ôn tập theo hướng dẫn
III. Tiến trình dạy học :
2 trang |
Chia sẻ: oanh_nt | Lượt xem: 1205 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Đại số 8 Tiết 3 Những hằng đẳng thức đáng nhớ, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 3: NHỮNG HĐT ĐÁNG NHỚ
I.Mục tiêu : Qua bài này Học sinh cần:
- Củng cố kiến thức về 7 hằng đẳng thức đáng nhớ.
- HS vận dụng thành thạo các hằng đẳng thức vào giải toán.
- Hướng dẫn HS dùng hằng đẳng thức (AB)2 để xét giá trị của một số tam thức bậc 2.
II. Phương tiện dạy học.
GV:Nội dung ôn tập
HS: Ôn tập theo hướng dẫn
III. Tiến trình dạy học :
Hoạt động GV
Hoạt động HS
Ghi bảng
Hoạt động 1: Kiểm tra bài cũ
GV giới thiệu quy luật về hệ số (Tam giác Pascal) và quy luật về số mũ (Bậc của từng hạng tử) trong dạng tổng đối với ba HĐT 1, 4, 5.
HS lên bảng ghi 5 HĐT đã học.
LÝ THUYẾT :
Các hằng đẳng thức đáng nhớ
1. (A+B)2 = A2 +2AB +B2
2. (A – B)2 = A2 –2AB +B2
3. A2 –B2 = (A-B )(A+B)
4. (A+B)3 = A3+3A2B +3AB2+B3
5. (A-B)3 = A3–3A2B +3AB2 –B3
Hoạt động 2: Bài tập.
HĐTP2.1
Bài 1:Tính :
Từng Hs lên bảng trình bày
B. BÀI TẬP:
Bài 1: Tính :
a) (2x+3y)2
= (2x)2 + 2.2x.3y + (3y)2= 4x2 + 12xy + 9y2
c) (x3-2)(x3 +2)
= (x3)2 - 22
= x6 – 4
d)
= (4a)3–3.(4a)2. b+3.4a(b)2 +(b)3
= 64a3 - 16a2b+ab2+b3
b), c), f) : BTVN
HĐTP2.2
Bài 2: Điền vào dấu * để được dạng của HĐT:
a) x2 + * +* = (*+3)2
b) * –20x+* = (2x+*)2
c) (x+*)3 = * + * +27x +*
d) ) (* – 1)2 = * –6x+*
e) * - * + 9 = (5x – *)2
f) y3- * + * - *= (* – 9)3
Làm mẫu câu a)
Gợi ý:
Đẳng thức cần tìm có dạng của HĐT nào? (Căn cứ vào số mũ và dấu của hạng tử).
- Đã biết những yếu tố nào?
- Cần tìm những yếu tố nào?Tìm ntn?
Trả lời câu hỏi của GV và cùng làm mẫu câu a.
- Hs trình bày các câu còn lại.
Bài 2: Điền vào dấu * để được dạng của HĐT:
a) x2 + * +* = (*+3)2
Ta có: A2 = x2 Þ A=x,
B = 3 Þ B2 = 9
Þ 2AB = 2.x.3 = 6x
Vậy ta có HĐT: x2 + 6x+9 = (x+3)2
c) (x+*)3 = * + * +27x +*
Ta có: A = x Þ A2 = x2 Þ A3 = x3
3AB2 = 27x Þ AB2 = 9x Þ B2=9 Þ B = 3 Þ B3 = 27
Þ 3A2B = 3x2.3 = 9x2.
Vậy ta được HĐT:
(x+3)3 = x3 +9x2 +27x +27
d) (* – 1)2 = * –6x+*
Ta có: B = 1 Þ B2 = 1
2AB = 6x Þ AB = 3x Þ A=3x
Þ A2 = 9x2
Vậy ta có HĐT: (3x – 1)2 = 9x2 –6x+1
b), e), f): BTVN
HĐTP2.3
Bài 3 So sánh các số sau:
a) A=1999.2001 và B= 20002 b) C= (2+1)(22+1)(24+1)(28+1)
và D=216
c) E= 1632 +74.163+372
và F = 1472 –94.147+472
Gợi ý:
a) A=1999.2001 có thể viết được dưới dạng của HĐT nào?
b) Tính rõ từng thừa số và tính tiách của 3 số đầu trong C Þ tường tự câu A.
c) Tương tự.
- 2 Hs trình bày
Bài 3: So sánh các số sau:
a) A=1999.2001 và B= 20002
Ta có: A=1999.2001
= (2000-1)(2000+1)
= 20002 – 12 < 20002
Vậy A < B.
b) C= (2+1)(22+1)(24+1)(28+1) và D=216
Ta có: C= (2+1)(22+1)(24+1)(28+1)
= 3.5.17.257 = 255.257
= (256-1)(256+1) = 2562 - 12
D=216 = (28)2 = 2562
Hiển nhiên: 2562 - 12 < 2562
Vậy C < D.
c) BTVN.
Hoạt động 3: Củng cố
* Hướng dẫn về nhà:
+Về nhà : Học thuộc các HĐT và xem lại các bài tập đã làm.
+ Làm các bài tập còn lại.
+ Chuẩn bị bài sau: Những HĐT đáng nhớ (tt).
File đính kèm:
- T3.doc