Giáo án Hình học 10 Tiết 82 Giá trị lượng giác của góc lượng giác

I Mục tiêu: Qua bài học học sinh cần nắm được:

 

1. Về kiến thức:

Hiểu thế nào là đường tròn lượng giác và hệ toạ độ vuông góc gắn với nó, điểm M trên đường tròn lượng giác xác định bởi số.

Biết các định nghĩa cosin, sin, côtang, tang của góc lượng giác và ý nghĩa hình học của chúng.

Nắm các công thức lượng giác cơ bản.

 

2.Về kỹ năng:

Biết xác định dấu của cos, sin, tan, cot khi biết các giá trị cosin, sin, tang, côtang của một số góc lượng giác đặc biệt.

Sử dụng thành thạo các công thức lượng giác cơ bản.

 

3.Về tư duy:

Hiểu được các công thức lượng giác, biết cách vận dụng các công thức lượng giác để giải bài tập.

 

II.Chuẩn bị:

Học sinh: Học bài cũ và xem trước bài mới.

Giáo viên: Soạn giáo án kỹ càng, chuẩn bị phiếu học tập, bảng phụ.

III.Phương pháp:

Dùng phương pháp gợi mở, vấn đáp lấy học sinh làm trung tâm.

 

IV.Tiến trình bài học và các hoạt động:

 

doc5 trang | Chia sẻ: oanh_nt | Lượt xem: 1272 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Giáo án Hình học 10 Tiết 82 Giá trị lượng giác của góc lượng giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Tiết 82 GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC I Mục tiêu: Qua bài học học sinh cần nắm được: 1. Về kiến thức: Hiểu thế nào là đường tròn lượng giác và hệ toạ độ vuông góc gắn với nó, điểm M trên đường tròn lượng giác xác định bởi số. Biết các định nghĩa cosin, sin, côtang, tang của góc lượng giác và ý nghĩa hình học của chúng. Nắm các công thức lượng giác cơ bản. 2.Về kỹ năng: Biết xác định dấu của cos, sin, tan, cot khi biết các giá trị cosin, sin, tang, côtang của một số góc lượng giác đặc biệt. Sử dụng thành thạo các công thức lượng giác cơ bản. 3.Về tư duy: Hiểu được các công thức lượng giác, biết cách vận dụng các công thức lượng giác để giải bài tập. II.Chuẩn bị: Học sinh: Học bài cũ và xem trước bài mới. Giáo viên: Soạn giáo án kỹ càng, chuẩn bị phiếu học tập, bảng phụ. III.Phương pháp: Dùng phương pháp gợi mở, vấn đáp lấy học sinh làm trung tâm. IV.Tiến trình bài học và các hoạt động: 1.Kiểm tra bài cũ: Cho cosa= và á a á. Tính sina, , ? 2. Nội dung bài mới: Hoạt động của HS Hoạt động của GV Tóm tắt ghi bảng HS: cosa¹0 Ûa¹+kp(kÎZ) HS:tana= HS: HS: HS nghe và nhận nhiệm vụ. Chăm chú lắng nghe và chép bài. HS nghe và nhận nhiệm vụ. HS: M (cosa; sina) HS: Đường thẳng d có phương trình. y = kx với k hệ số góc HS: Khi sina = k.cosa HS: k = HS: Điểm T có hoành độ bằng 1 HS: x = 1 Þ y = HS: T (1; ) Hay T (1; tana ) = tana HS: Nghe và nhận nhiệm vụ HS: Nghe và nhận nhiệm vụ HS: Chăm chú lắng nghe và chép bài. HS: M Î (I), (III) thì tan(OA;OM) > 0 M Î (II), (IV) thì cot(OA;OM) < 0 HS:(OA;OM’) = a+kp ( k Î Z ) Tan(OA;OM) = Tan(OA;OM’) = Tana = Tan(a+kp) HS: Tana = Tan(a+kp) Cota = Cot(a+kp) ( k Î Z ) HS: = . =1 Suy ra: sin2a+cos2a = 1 Þ 1+ = HS: =cot2a HS: HS:Nghe và nhận nhiệm vụ. HS: Nghe và nhận nhiệm vụ. HS: sin2a+cos2a=1 thì cosa ñ 0 HS: HS: thì sina ñ 0, cosa á0 GV: Giới thiệu cho học sinh biết tỉ số , còn được gọi là tang của góc a, cotang của góc a GV : đưa ra định nghĩa về tana, cota. H1: Để tỉ số tồn tại, ta cần có điều kiện gì? Vậy tana=? H2:Để tỉ số tồn tại ta cần có điều kiện gì? H3: Vậy cota=? GV: phát phiếu học tập cho các nhóm. GV: gọi các nhóm lên làm các ví dụ trên. GV: nhận xét và kết luận bài làm của các nhóm. GV : Phát phiếu học tập cho các nhóm H4: Điểm M có toạ độ ? H5: Đường thẳng d qua O không cùng phương với Oy có phương trình là gi? H6: M(cosa;sina) thuộc d khi nào? H7: Suy ra k = ? Hay d: y =.x H8: Điểm T có hoành độ bằng bao nhiêu? H9: Suy ra tung độ điểm T? H10: T có toạ độ bằng bao nhiêu? GV: Vì vậy trục At còn gọi là trục tang. GV: Bằng cách chứng minh tương tự ta cũng có cota= GV: Phát phiếu học tập cho các nhóm GV: Gọi hai học sinh lên xác định trên hai đường tròn lượng giác GV: Nhận xét, đối chiếu, kết luận bài làm của các nhóm với hai bạn làm trên bảng GV: Các trục toạ độ Oxy chia mặt phẳng thành bốn góc phần tư I, II, III, IV. Hỏi với điểm M nằm trong góc phần tư nào thì a) tan(OA;OM) > 0? b) cot(OA;OM) < 0? GV: Gọi d đường thẳng qua O cắt đường tròn lượng giác tại M, M’ sao cho (OM,OM’)=a ,d cắt At tại điểm T. (OA;OM’)=? Tan(OA;OM)=? Tan(OA;OM’)=? H11: Có nhận xét gì về tang của a và a+kp ? GV: Tương tự ta cũng có Cota=Cot(a+kp) H12 : Từ ý nghĩa hình học, ta rút ra được tính chất gì? H13: Khi sina¹0; cosa¹0, hãy tính ? Từ đó suy ra ? ? H14:sin2a+cos2a=1 Khi sina¹0, chia hai vế cho sin2a ta được gì? H15: =? Khi cosa¹0, chia hai vế cho cos2 a ta được gì? H16: =? GV đưa ra tính chất cuối cùng. GV: Yêu cầu HS vẽ bảng GTLG của một số góc đặc biệt vào vở GV: Phát phiếu học tập cho các nhóm H17: Áp dụng công thức gì để tính cosa? H18: , cosa có dấu như thế nào? H19: Để tìm cosa biết sina ta nên áp dụng công thức nào? H20: Với , xác định dấu của sina và cosa? Gọi hai HS lên bảng làm. GV: Nhận xét, đối chiếu và kết luận. 3.Giá trị lượng giác tang và cotang: a)Định nghĩa: Cho góc lượng giác (Ou,Ov) có số đo a. Nếu cosa¹0(a¹+kp, k Î Z)thì tỉ số được gọi là tang của góc a. KH: tana Vậy tan(Ou,Ov)=tana= Nếu sina¹0(a¹kp, k Î Z)thì tỉ số được gọi là côtang của góc a. KH: cota Vậy cot(Ou,Ov) = cota = Ví dụ: tính tan, Cot Giải: b) Ý nghĩa hình học: Phiếu học tập Bài toán: Xét trục số At gốc A, tiếp xúc đường tròn lượng giác tại gốc A và cùng hướng với Oy. Khi (OA,OM) = a (cosa¹0)thì đường thẳng OM cắt trục At tại điểm T. Xác định toạ độ điểm T ? Ví dụ: Tính: Giải: M không thuộc trục toạ độ nào. M Î (I) thì sin(OA;OM) > 0 Cos(OA;OM) > 0 Nên tan(OA;OM) > 0 M Î (III) thì sin(OA;OM) < 0 Cos(OA;OM) < 0 Nên tan(OA;OM) > 0 M Î (II) thì sin(OA;OM) > 0 Cos(OA;OM) < 0 Nên cot(OA;OM) < 0 M Î (IV) thì sin(OA;OM) < 0 Cos(OA;OM) > 0 Nên cot(OA;OM) < 0 c) Tính chất: Tana=Tan(a+kp) Cota=Cot(a+kp) ( Khi các biểu thức có nghĩa) * * Với a ¹ k, k Î Z * * 4.Tìm GTLG của một số góc Phiếu học tập 1: Cho . Hãy tìm cosa, biết . Phiếu học tập 2: Cho . Tính cosa, sina biết . Bài làm: 1)Ta có: sin2a + cos2a = 1 Þcos2a = 1- sin2a = Þcos2a = Þcosa = hay cosa = Vì nên cosa ñ 0 Suy ra cosa = 2) Ta có Suy ra hay Vì nên cosa á 0 Do đó Suy ra sina = cosa.tana = = IV. Củng cố, dặn dò: - Nắm các định nghĩa về tang, côtang của góc (cung) a và các tính chất của chúng. - Làm bài tập còn lại trong SGK.

File đính kèm:

  • doctiet 82 ĐS.doc