I/ Mục tiêu :
Qua bài này học sinh cần :
1. Về kiến thức :
- Nắm vững khái niệm hai đường thẳng song song và hai đường thẳng chéo nhau trong không gian.
- Biết sử dụng các định lý :
+ Qua một điểm không thuộc một đường thẳng cho trước có một và chỉ một đường thẳng song song với đường thẳng đã cho.
+ Định lý về giao tuyến của ba mặt phẳng và hệ quả của định lí đó
+ Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.
2. Về kĩ năng:
- Xác định được vị trí tương đối giữa hai đường thẳng.
- Biết cách chứng minh hai đường thẳng song song
3. Về tư duy và thái độ :
- Phát triển tư duy trừu tượng,tích cực hoạt động, trả lời câu hỏi. Biết quan sát và phán đoán chính xác.
3 trang |
Chia sẻ: lephuong6688 | Lượt xem: 789 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo án Hình Học 11 (chương trình chuẩn) - Tiết 18: Ôn tập chương II, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trêng THPT T©n Yªn 2
Tæ To¸n
Tiết theo phân phối chương trình : 18.
Chương I1: ®êng th¼ng & mÆt ph¼ng trong kg
¤n TËp Ch¬ng II (2 tiÕt)
Ngµy so¹n: 10/10/2010
TiÕt 1
I/ Mục tiêu :
Qua bài này học sinh cần :
Về kiến thức :
- Nắm vững khái niệm hai đường thẳng song song và hai đường thẳng chéo nhau trong không gian.
- Biết sử dụng các định lý :
+ Qua một điểm không thuộc một đường thẳng cho trước có một và chỉ một đường thẳng song song với đường thẳng đã cho.
+ Định lý về giao tuyến của ba mặt phẳng và hệ quả của định lí đó
+ Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.
2. Về kĩ năng:
- Xác định được vị trí tương đối giữa hai đường thẳng.
- Biết cách chứng minh hai đường thẳng song song
3. Về tư duy và thái độ :
- Phát triển tư duy trừu tượng,tích cực hoạt động, trả lời câu hỏi. Biết quan sát và phán đoán chính xác.
II. Chuẩn bị :
1. Giáo viên : Các bài tập, các slide, computer và projecter.
2. Học sinh : Nắm vững kiến thức đã học và làm bài tập trước ở nhà
III. Phương pháp dạy học :
Gợi mở, vấn đáp, đan xen hoạt động nhóm.
IV. Tiến trình bài học :
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
GHI BẢNG VÀ CHIẾU
Nhắc lại các tính chất đã học về hai đường thẳng song song, hai đường thẳng chéo nhau.
HĐ 1 :Làm bài 1
(10')
: Bài tập áp dụng tính chất về giao tuyến của ba mặt phẳng
- bài tập 1 và cho HS thảo luận, báo cáo.
- GV ghi lời giải, chính xác hóa. Nhấn mạnh nội dung định lí đã áp dụng.
HĐ 2: Làm bài 2
(15')
- Chia HS thành 4 nhóm
+ Nhóm 1,2 : thảo luận và trình bày câu 2a
+ Nhóm 3, 4 : thảo luận và trình bày câu 2b.
- Chiếu slide trình bàykết quả để HS tiếp tục nhận xét, sửa sai.
- Cho HS thấy đã áp dụng hệ quả của định lí 2.
- Nhận xét chung
HĐ3: Làm bài 3
(15')
- Cho HS HĐ theo 4 nhóm
+ Nhóm 1 : câu 3a
+ Nhóm 2, 3 : câu 3b
+ Nhóm 4 : câu 3c
- Có những cách nào để chứng minh ba điểm thẳng hàng?
- Vậy trong bài này ta đã sử dụng cách nào?
- Củng cố kiến thức cũ : đường trung bình của tam giác.
- Chiếu slide kết quả bài tập 3
- Nhận xét chung, sửa sai
- HS trả lời
- HS thảo luận theo nhóm và cử dậi diện nhóm trình bày.
- HS theo dõi, nhận xét
- HS chia nhóm hoạt động. Đại diện nhóm trình bày.
- Nhóm 1,3 trình bày, nhóm 2, 4 nhận xét
- Theo dõi, nhận xét
- Hoạt động nhóm. Đại diện nhóm trình bày
- Đại diện nhóm khác nhận xét bài làm của bạn.
- Nêu những cách chứng minh ba điểm thẳng hàng (có thể nhắc đến phương pháp vectơ đã học ở lớp 10)
- Ba điểm cùng thuộc một đường thẳng (giao tuyến của hai mặt phẳng)
- nội dung các tính chất.
Bài 1:
Bài2a)
Nếu PR // AC thì
(PQR) AD = S
Với QS // PR //AC
b)
Gọi I = PR AC . Ta có :
(PRQ) (ACD) = IQ
Gọi S = IQ AD . Ta có :
S = AD (PQR).
Bài 3 : (chiếu slide bài tập 3)
a) Trong mp (ABN) :
Gọi
Ta có :
b)
Ta có là điểm chung của hai mp (ABN) và (BCD) nên thẳng hàng.
Trong , ta có :
G là trung điểm của NM và
// , suy ra là trung điểm của .
Tương tự ta có : là trung điểm .
Vậy
c)
V. Củng cố(5') :
1. Thế nào là hai đường thẳng song song trong không gian ?
2. Nêu định lý về giao tuyến của ba mặt phẳng và hệ quả của định lý đó.
3. Bài tập về nhà :
Cho tứ diện ABCD . Cho I và J tương ứng là trung điểm của BC và AC, M là một điểm tuỳ ý trên cạnh AD.
a) Tìm giao tuyến d của hai mp (MỊ) và (ABD) .
b) Gọi .
Tìm tập hợp điểm K khi M di động trên đoạn AD ( M không là trung điểm của AD)
File đính kèm:
- HH T18.DOC